Search results

1 – 10 of over 6000
Article
Publication date: 1 November 1956

The following extracts are from a paper presented at a General Meeting of The Institution of Mechanical Engineers last month, arranged in conjunction with the Applied Mechanics…

Abstract

The following extracts are from a paper presented at a General Meeting of The Institution of Mechanical Engineers last month, arranged in conjunction with the Applied Mechanics and Lubrication Groups. The authors were G. W. K. Ford, M.B.E., M.A., D. M. Harris, B.Sc., and D. Pantall, all of the Atomic Energy Research Establishment, Harwell. Copies of the full paper are available from the Institution and written communications on it should reach them by 7th December. The pumping of molten metals, used as coolants in nuclear reactors cause lubrication problems which eliminate any possibility of employing conventional mineral or known synthetic lubricants. The authors have experimented with a molten bismuth pump and have used an inert gas for lubrication of the self‐acting bearings.

Details

Industrial Lubrication and Tribology, vol. 8 no. 11
Type: Research Article
ISSN: 0036-8792

Article
Publication date: 17 April 2024

Cheng Xiong, Bo Xu and Zhenqian Chen

This study aims to investigate the rarefaction effects on flow and thermal performances of an equivalent sand-grain roughness model for aerodynamic thrust bearing.

Abstract

Purpose

This study aims to investigate the rarefaction effects on flow and thermal performances of an equivalent sand-grain roughness model for aerodynamic thrust bearing.

Design/methodology/approach

In this study, a model of gas lubrication thrust bearing was established by modifying the wall roughness and considering rarefaction effect. The flow and lubrication characteristics of gas film were discussed based on the equivalent sand roughness model and rarefaction effect.

Findings

The boundary slip and the surface roughness effect lead to a decrease in gas film pressure and temperature, with a maximum decrease of 39.2% and 8.4%, respectively. The vortex effect present in the gas film is closely linked to the gas film’s pressure. Slip flow decreases the vortex effect, and an increase in roughness results in the development of slip flow. The increase of roughness leads to a decrease for the static and thermal characteristics.

Originality/value

This work uses the rarefaction effect and the equivalent sand roughness model to investigate the lubrication characteristics of gas thrust bearing. The results help to guide the selection of the surface roughness of rotor and bearing, so as to fully control the rarefaction effect and make use of it.

Details

Industrial Lubrication and Tribology, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 13 March 2017

Abdelrasoul M. Gad

Compliant foil thrust bearings are promising bearings for high-speed oil-free turbomachinery. However, most previous experimental and numerical approaches to investigate the…

Abstract

Purpose

Compliant foil thrust bearings are promising bearings for high-speed oil-free turbomachinery. However, most previous experimental and numerical approaches to investigate the performance of these bearings have ignored the effect of bearing runner misalignment. Therefore, this paper aims to evaluate the effects of static and dynamic angular misalignments of the bearing runner on the performance of a gas-lubricated foil thrust bearing.

Design/methodology/approach

The bearing runner is allowed a maximum angular misalignment that produces a minimum gas film thickness as low as 20 per cent of the nominal clearance. Then, the variations of bearing load carrying capacity, viscous power loss and stiffness and damping coefficients of the gas film with runner misalignment are thoroughly analyzed. The flow in the gas film is modeled with compressible Reynolds equation along with the Couette approximation technique, and the deformation of the compliant bearing is calculated with a robust analytical model. Small perturbations method is used to calculate the force and moment dynamic coefficients of the gas film.

Findings

The results show that misaligned foil thrust bearings are capable of developing a restoring moment sufficient enough to withstand the imposed misalignments. Furthermore, the enhanced hydrodynamic effect ensures a stable operation of the misaligned bearing, and the results highlighted the role of the compliant bearing structure to maintain foil bearing prominent features even at misaligned conditions.

Originality/value

The value of this study is the evaluation of the effects of runner angular misalignments on the static and dynamic characteristics of Generation II bump-type foil thrust bearing.

Details

Industrial Lubrication and Tribology, vol. 69 no. 2
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 16 August 2011

Cheng‐Chi Wang

This paper employs a hybrid numerical method combining the differential transformation method (DTM) and the finite difference method (FDM) to study the bifurcation and nonlinear…

Abstract

Purpose

This paper employs a hybrid numerical method combining the differential transformation method (DTM) and the finite difference method (FDM) to study the bifurcation and nonlinear behavior of a rigid rotor supported by a relative short gas lubricated journal bearing system with herringbone grooves. The analysis reveals a complex dynamic behavior comprising periodic, subharmonic and quasi‐periodic responses of the rotor center. The dynamic behavior of the bearing system varies with changes in the rotor mass and bearing number. The current analytical results are found to be in good agreement with those of other numerical methods. This paper discusses these issues.

Design/methodology/approach

In this paper, DT is used to deal Reynolds equation and is also one of the most widely used techniques for solving differential equations due to its rapid convergence rate and minimal calculation error. A further advantage of this method over the integral transformation approach is its ability to solve nonlinear differential equations. In solving the Reynolds equation for the current gas bearing system, DTM is used for taking transformation with respect to the time domain τ, and then the FDM is adopted to discretize with respect to the directions of coordinates.

Findings

From the Poincaré maps of the rotor center as calculated by the DTM&FDM method with different values of the time step, it can be seen that the rotor center orbits are in agreement to approximately four decimal places for the different time steps. The numerical studies also compare the results obtained by the SOR&FDM and DTM&FDM methods for the orbits of the rotor center. It is observed that the results calculated by DTM&FDM are more accurately than SOR&FDM. Therefore, the DTM&FDM method suits this gas bearing system and provides better convergence than SOR&FDM method.

Originality/value

This study utilizes a hybrid numerical scheme comprising the DTM and the FDM to analyze nonlinear dynamic behavior of a relative short gas lubricated journal bearing system with herringbone grooves. The system state trajectory, phase portraits, the Poincaré maps, the power spectra, and the bifurcation diagrams reveal the presence of a complex dynamic behavior comprising periodic, subharmonic and quasi‐periodic responses of the rotor center. Therefore, the proposed method provides an effective means of gaining insights into the nonlinear dynamics of relative short gas lubricated journal bearing systems with herringbone grooves.

Details

Industrial Lubrication and Tribology, vol. 63 no. 5
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 25 June 2019

Ruzhong Yan, Liaoyuan Wang and Shengze Wang

The purpose of this study is to reveal the influence law of pressure-equalizing grooves on aerostatic bearings and improve the static performance of bearings by optimizing the…

Abstract

Purpose

The purpose of this study is to reveal the influence law of pressure-equalizing grooves on aerostatic bearings and improve the static performance of bearings by optimizing the distribution form of grooves.

Design/methodology/approach

In view of two kinds of common restrictor distribution forms on the thrust surface, the linear and the rectangular, six kinds of pressure-equalizing groove schemes were proposed – the line-shape, the extended-shape, the S-shape, the oblong-shape, the X-shape and the reticular-shape. Based on the analysis of lubrication theory of the orifice-type aerostatic bearing, the numerical simulations of different bearings were carried out. The pressure distributions and static characteristic curves of different bearings were obtained.

Findings

The study reveals that the adoption of the pressure-equalizing grooves can substantially improve the load capacity and static stiffness of the bearing and make the bearing maintain a uniform stress, which enhances operating accuracy and life of the bearing. The superior function of the reticular-shape groove is highlighted.

Originality/value

The research results can effectively guide the optimization design of aerostatic bearings and provide a crucial technical reference for application of ultra-precision aerostatic supporting system.

Details

Industrial Lubrication and Tribology, vol. 71 no. 7
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 1 May 1972

C.M. Taylor

The main types of fluid film bearing, irrespective of lubricant, are those relying on surface motion to generate the fluid film pressure and hence load capacity (hydrodynamic…

Abstract

The main types of fluid film bearing, irrespective of lubricant, are those relying on surface motion to generate the fluid film pressure and hence load capacity (hydrodynamic lubrication—or aerodynamic for gases), and those relying on an external supply of pressurized lubricant (hydrostatic or aerostatic lubrication). A bearing employing a mixture of the two lubrication modes is said to be hybrid. A special case of self‐acting bearings is the squeeze film bearing in which fluid pressure is generated due to the normal motion of the bearing surfaces. Particular bearing geometries will not be discussed.

Details

Industrial Lubrication and Tribology, vol. 24 no. 5
Type: Research Article
ISSN: 0036-8792

Article
Publication date: 2 August 2022

Cheng Xiong, Bo Xu, Yulong Jiang, Xiangyu Lu and Zhenqian Chen

This study aims to investigate the thermohydrodynamic (THD) and thermoelastohydrodynamic (TEHD) performance of an air-lubricated thrust bearing under different slip conditions…

Abstract

Purpose

This study aims to investigate the thermohydrodynamic (THD) and thermoelastohydrodynamic (TEHD) performance of an air-lubricated thrust bearing under different slip conditions, especially the slip length effect.

Design/methodology/approach

In this study, a new modified boundary slip model was established to investigate thrust bearing performance. The THD and TEHD bearing characteristic distribution was analyzed with fluid–thermal–structure interaction approach. The effect of the slip length on the bearing performance was studied using various bearing structure parameters.

Findings

The increased slip length changed the classical feature distribution of the film pressure and temperature. The sacrifice of the bearing load capacity effectively compensated for the aerodynamic thermal effect and friction torque under the slip condition. The TEHD model has a lower film pressure and load capacity than the THD model. However, it also has lower film temperature, lower friction torque and smaller Knudsen number (Kn).

Originality/value

The bearing THD and TEHD performances of the modified boundary slip model were compared with those of a traditional no-slip bearing. The results help to guide the selection of the bearing surface materials and processing technology of rotor and foil, so as to fully control the degree of slip and make use of it.

Details

Industrial Lubrication and Tribology, vol. 74 no. 9
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 6 November 2023

Qing Liu, Li Wang and Ming Feng

This paper aims to study the clearance compatibility of active magnetic bearing (AMB) and gas bearing (GB) to achieve a single-structured hybrid gas-magnetic bearing (HGMB), which…

Abstract

Purpose

This paper aims to study the clearance compatibility of active magnetic bearing (AMB) and gas bearing (GB) to achieve a single-structured hybrid gas-magnetic bearing (HGMB), which uses a single bearing structure to realize both the functions of gas bearing and magnetic bearing.

Design/methodology/approach

Because the radial clearance size of the AMB is typically ten times larger than that of the GB, radial clearance compatibility of GB and AMB needs to maximize the radial clearance of GB by adjusting structural parameters. Parametric analysis of structural parameters of GB is explored. Furthermore, a general structural design principle based on static analysis, rotordynamic performance and system stability is established for the single-structured HGMB.

Findings

Load capacity is vastly reduced due to the enlarged radial clearance of the GB. A minimum clearance needs to be ensured by increasing the bearing diameter or width to compensate for the reduced load capacity, yet indirectly raising the bearing load. Increased bearing load is conducive to stability, yet it raises the risk of rotor abrasion. In addition, excessively large bearing diameter leads to system instability, and inappropriate bearing width affects critical speeds. A general structural design principle is established and the designed HGMB–rotor processes optimal performances.

Originality/value

A single-structured HGMB is proposed to address the urgent demand for high-speed, cryogenic turboexpanders with frequent starts/stops. This design applies a single-bearing structure to realize the characteristics of both GB and AMB, greatly simplifying the implementation, reducing air friction loss and raising critical speeds. This paper provides a fresh perspective on the development of cryogenic turboexpanders for hydrogen liquefaction. It theoretically validates the feasibility and provides a design guide for a single-structured HGMB system.

Details

Industrial Lubrication and Tribology, vol. 75 no. 10
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 20 December 2022

Shang-Han Gao and Sheng-Long Nong

The purpose of this paper is to derive the one-dimensional governing equations to describe the pressure distribution, load capacity and stiffness of aerostatic circular thrust…

91

Abstract

Purpose

The purpose of this paper is to derive the one-dimensional governing equations to describe the pressure distribution, load capacity and stiffness of aerostatic circular thrust bearing with a single air supply inlet.

Design/methodology/approach

The film flow field is divided into four regions: supply pressure region, pressure dropping region, pressure rising region and laminar flow region. The influences of bearing clearance and supply pressure on the pressure distribution, load capacity and stiffness of the bearing are presented.

Findings

With the large film clearance and large supply pressure, the oblique shock wave occurs near the entrance of gas film, which greatly increases the pressure drop region. Hence, it is not appropriate to consider the oblique shock as a normal shock.

Originality/value

This paper introduces the invariants at the entrance of gas film, employs the functional relationships between density and pressure, and provides the empirical formulas for the pressure dropping and rising regions. The pressure distribution curves are therefore illustrated through a considerably simplified computational process.

Details

Industrial Lubrication and Tribology, vol. 75 no. 2
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 8 January 2020

Ming Feng, Hongyang Hu and Tianming Ren

To improve the load capacity and stability of gas foil journal bearings (GFJB), this paper aims to propose a novel GFJB with taper-grooved top foil.

Abstract

Purpose

To improve the load capacity and stability of gas foil journal bearings (GFJB), this paper aims to propose a novel GFJB with taper-grooved top foil.

Design/methodology/approach

A modified bump stiffness model is established considering rounding and friction. By considering the variation of clearance in the circumferential and axial direction, the static and dynamic characteristics of the novel bearing are calculated using the finite difference method, and perturbation method, respectively. The bearing performance under different groove parameters is studied and compared to the traditional bearings.

Findings

The results show that this novel GFJB can bring multi-extra local dynamic pressure and decrease the gas end leakage, which improves the static and dynamic properties. Moreover, as the increment of groove depth, the load capacity and direct stiffness are reinforced. There is an optimal groove width to maximize the load capacity, and the taper-groove is more beneficial to the improvement of bearing performance than other groove shapes. For the novel GFJB (Ng = 6, Hg = 10µm), the load capacity and direct stiffness increase by about 6.67 and 13.5 per cent, respectively. The stability threshold speed (STS) of a rotor supported by the novel bearings is also increased.

Originality/value

The performance of the presented novel GFJB is enhanced immensely compared to the traditional bearings, and the results are expected to be helpful to bearing designers, researchers and academicians concerned.

Peer review

The peer review history for this article is available at: https://publons.com/publon/10.1108/ILT-08-2019-0307.

Details

Industrial Lubrication and Tribology, vol. 72 no. 3
Type: Research Article
ISSN: 0036-8792

Keywords

1 – 10 of over 6000