Search results

1 – 10 of 61
Article
Publication date: 14 February 2020

Ahmed M. Saleh, Wael Crosby, Ibrahim M. El Fahham and M. Elhadary

The purpose of this paper is to study the effect of liner surface texture on journal bearing performance. Modeling the profile curvature of the dimples or grooves is planned for…

Abstract

Purpose

The purpose of this paper is to study the effect of liner surface texture on journal bearing performance. Modeling the profile curvature of the dimples or grooves is planned for different cases of texture surface under thermo-hydrodynamic condition (THD). The aim of this paper is to determine the effect the texture surface on the performance of journal bearing and specify the optimum shape for texture dimples.

Design/methodology/approach

The paper was opted for an exploratory study by applying finite difference method to solve the energy equation, the heat conduction equations and the Reynolds equation numerically. The lubricant film thickness is divided to a mesh of 640,000 points. The equations were solved for each point of the mesh by using a MATLAB code. For texture shape optimization, 24 cases of different texture shapes were selected which includes elliptical, triangle and square curvature shape.

Findings

The paper provides theoretical insights about the effect of texture shape on journal bearing performance. It was concluded that to get a high load-carrying capacity, the direction of curvature is preferably to be perpendicular to the sliding direction. The convex texture has higher load carrying capacity than concave texture. Finally, the surface with textures in channel form yields better overall performance than the surface with several dimples.

Originality/value

This paper fulfils an identified need to study how texture surface affects the performance of journal bearing under thermo-hydrodynamic conditions.

Details

Industrial Lubrication and Tribology, vol. 72 no. 3
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 2 January 2023

Dinesh Haribhau Kamble, Vikas M. Phalle, Shankar S. Mantha and Sanjay Rangrao Pawar

Where combined radial and axial loads act on the bearing, the conical journal bearing is best suited. Large turbines, generators, compressors and other machinery perform better…

Abstract

Purpose

Where combined radial and axial loads act on the bearing, the conical journal bearing is best suited. Large turbines, generators, compressors and other machinery perform better while using conical hydrodynamic journal bearings (CHJBs). The bearings worn out and the performance suffered because of regular use and numerous start and stop operations.

Design/methodology/approach

The performance of CHJB is evaluated using both analytical and experimental methods in this paper. The analytical method for resolving Reynolds equation uses spherical coordinate system and finite element analysis. On the CHJB test rig, data is collected for different radial loads with 10°, 20° and 30° semi-cone angles using hydraulic oil of viscosity grade ISO VG46.

Findings

The findings of this paper demonstrate that at various semi-cone angles for worn-out bearings, the maximum pressure developed increases with increasing radial load.

Originality/value

This paper provides analytical and experimental performance of CHJBs considering the effect of abrasive wear that is caused because of frequent start and stop operations of machine. The results of wear impact on CHJBs will be helpful for researchers and design engineers.

Details

Industrial Lubrication and Tribology, vol. 75 no. 2
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 8 May 2018

R. Rashidi Meybodi, A. Rasoolizadeh Shooroki and M. Zare Mehrjardi

The purpose of this study is to examine the thermo-hydrodynamic performance of tilted non-circular journal bearings lubricated with a micropolar fluid. The investigated bearing…

Abstract

Purpose

The purpose of this study is to examine the thermo-hydrodynamic performance of tilted non-circular journal bearings lubricated with a micropolar fluid. The investigated bearing types are two- and three-lobe journal bearings with finite length.

Design/methodology/approach

For this purpose, modified Reynolds, energy and three-dimensional Laplace equations are solved numerically by using generalized differential quadrature method. The effects of micropolarity characteristics of lubricants, such as characteristic length and coupling number, as well as tilt angle as a design parameter, on the performance of non-circular two- and three-lobe journal bearings are studied.

Findings

The results show that the tilt angle can affect the temperature and pressure profiles causing variation in the performance of non-circular bearings. Increasing coupling number and decreasing characteristic length cause the load-carrying capacity to decrease because of the increase in maximum oil temperature of the fluid film of lubricant and decrease in the minimum oil base viscosity. So, it is possible to select suitable values of tilt angle for achieving optimum performance of these bearings.

Originality/value

The non-circular bearings suggest several design parameters such as tilt angle for designers. By considering thermal effects for micropolar lubricant, the requirements of a specific application can be fulfilled.

Details

Industrial Lubrication and Tribology, vol. 70 no. 4
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 11 April 2016

Amit Singla and Amit Chauhan

The current trend of modern industry is to use machineries which rotate at high speed along with the capability of carrying heavy rotor loads. This paper aims at static thermal…

Abstract

Purpose

The current trend of modern industry is to use machineries which rotate at high speed along with the capability of carrying heavy rotor loads. This paper aims at static thermal analysis of two different profiles of non-circular journal bearings – a true elliptical bearing and orthogonal bearing.

Design/methodology/approach

The Reynolds equation has been solved through finite difference method to compute the oil film pressure. Parabolic temperature profile approximation technique has been used to solve the energy equation and thus used for computation of various bearing performance characteristics such as thermo-hydrodynamic oil film pressure, temperature, load capacity, Sommerfeld number and power loss characteristics across the bearing. The effect of ellipticity ratio on the bearing performance characteristics has also been obtained for both the elliptical and vertical offset bearing using three different commercially available grades of oil (Hydrol 32, 68 and 100).

Findings

It has been observed that the thermo-hydrodynamic pressure and temperature rise of the oil film is less in orthogonal bearing as compared to the true elliptical bearing for same operating conditions. The effect of ellipticity ratio of non-circularity on bearing performance parameters have been observed to be less in case of elliptical bearing as compared to orthogonal bearing. It has been concluded that though the rise in oil film temperature is high for true elliptical bearing, but still it should be preferred over orthogonal profile under study, as it has comparably good load-carrying capacity.

Originality/value

The performance parametric analysis will help the designers to select such kind of non-circular journal bearing for various applications.

Details

Industrial Lubrication and Tribology, vol. 68 no. 3
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 29 December 2023

Jyoti Ranjan Mohapatra and Manoj Kumar Moharana

This study aims to investigate a new circuitous minichannel cold plate (MCP) design involving flow fragmentation. The overall thermal performance and the temperature uniformity…

Abstract

Purpose

This study aims to investigate a new circuitous minichannel cold plate (MCP) design involving flow fragmentation. The overall thermal performance and the temperature uniformity analysis are performed and compared with the traditional serpentine design. The substrate thickness and its thermal conductivity are varied to analyse the effect of axial-back conduction due to the conjugate nature of heat transfer.

Design/methodology/approach

The traditional serpentine minichannel is modified into five new fragmented designs with two inlets and two outlets. A three-dimensional numerical model involving the effect of conjugate heat transfer with a single-phase laminar fluid flow subjected to constant heat flux is solved using a finite volume-based computational fluid dynamics solver.

Findings

The minimum and maximum temperature differences are observed for the two branch fragmented flow designs. The two-branch and middle channel fragmented design shows better temperature uniformity over other designs while the three-branch fragmented designs exhibited better hydrodynamic performance.

Practical implications

MCPs could be used as an indirect liquid cooling method for battery thermal management of pouch and prismatic cells. Coupling the modified cold plates with a battery module and investigating the effect of different battery parameters and environmental effects in a transient state are the prospects for further research.

Originality/value

The study involves several aspects of evaluation for a conclusive decision on optimum channel design by analysing the performance plot between the temperature uniformity index, average base temperature and overall thermal performance. The new fragmented channels are designed in a way to facilitate the fluid towards the outlet in the minimum possible path thereby reducing the pressure drop, also maximizing the heat transfer and temperature uniformity from the substrate due to two inlets and a reversed-flow pattern. Simplified minichannel designs are proposed in this study for practical deployment and ease of manufacturability.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 34 no. 3
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 12 March 2018

K.R. Kadam and S.S. Banwait

Different groove angles are used to study performance characteristics of two-axial groove journal bearing. In this study two grooves are located at ±90º to the load line. The…

Abstract

Purpose

Different groove angles are used to study performance characteristics of two-axial groove journal bearing. In this study two grooves are located at ±90º to the load line. The various angles of grooves have been taken as 10° to 40° in the interval of 5°. Different equations such as Reynolds equation, three-dimensional energy equation and heat conduction equation have been solved using finite element method and finite difference method. Pressure distribution in fluid is found by using Reynolds equation. The three-dimensional energy equation is used for temperature distribution in the fluid film and bush. One-dimensional heat conduction equation is used for finding temperature in axial direction for journal. There is a very small effect of groove angle on film thickness, eccentricity ratio and pressure. There is a drastic change in attitude angle and side flow. Result shows that there is maximum power loss at large groove angle. So the smaller groove angle is recommended for two-axial groove journal bearing.

Design/methodology/approach

The finite element method is used for solving Reynolds equation for pressure distribution in fluid. The finite difference method is adopted for finding temperature distribution in bush, fluid and journal.

Findings

Pressure distribution in fluid is found out. Temperature distribution in bush, fluid and journal is found out. There is a very small effect of groove angle on film thickness, eccentricity ratio and pressure.

Research limitations/implications

The groove angle used is from 10 to 40 degree. The power loss is more when angle of groove increases, so smaller groove angle is recommended for this study.

Practical implications

The location of groove angle predicts the distribution of pressure and temperature in journal bearing. It will show the performance characteristics. ±90° angle we will prefer that will get before manufacturing of bearing.

Social implications

Due to this study, we will get predict how the pressure and temperature distribute in the journal. It will give the running condition of bearing as to at what speed and load we will get the maximum temperature and pressure in the bearing.

Originality/value

The finite element method is used for solving the Reynolds equation. Three-dimensional energy equation is solved using the finite difference method. Heat conduction equation is also solved for journal. The C language is used. The code is developed in C language. There are different equations which depend on each other. The temperature is dependent on pressure viscosity of fluid, etc. so C code is preferred.

Article
Publication date: 16 August 2022

Guotao Zhang, Weijie Cai, Xiaoyi Wang, Junpeng Xu, Yanguo Yin and Xicheng Wei

The purpose of this paper is to put forward the lubrication model of oil bearing and enrich the design theory under the condition of mixed lubrication.

Abstract

Purpose

The purpose of this paper is to put forward the lubrication model of oil bearing and enrich the design theory under the condition of mixed lubrication.

Design/methodology/approach

A mixed lubrication model of bilayer porous bearing is established. The effects of the working conditions on the lubrication performance and seepage behavior were analyzed.

Findings

Results show that the oil film pressure mainly occurs in the bearing convergence zone and contact pressure mainly occurs near the minimum film thickness. The oil infiltrates into the porous matrix in the contact area and precipitates out to the friction surface at the inlet of the contact area. The oil seepage velocity and dynamic pressure effect at the friction interface can be improved by reasonably matching the load and speed. With the decrease of the external load or increase of the rotating speed, the lubrication performance becomes well.

Originality/value

This study provides a reference for the design and application of oil bearing under harsh working conditions.

Details

Industrial Lubrication and Tribology, vol. 74 no. 9
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 29 December 2023

Sanyam Sharma and Rajiv Verma

This study aims to investigate the stability performance of partial journal bearings of 120° and 180° partial angles with micropolar lubricant.

Abstract

Purpose

This study aims to investigate the stability performance of partial journal bearings of 120° and 180° partial angles with micropolar lubricant.

Design/methodology/approach

To investigate the stability characteristics of partial journal bearing, a MATLAB source code is written. To solve the Reynolds’ equation, the finite element method is used. Stability performances of 120° and 180° partial journal bearings are computed for a wide range of non-dimensional micropolar fluid parameters and working eccentricities.

Findings

The presented results provide design data for stability parameters in terms of equivalent stiffness, whirl frequency ratio, critical mass and threshold speed of the rotor with respect to eccentricities and material size of the lubricant. The stability of 180° partial journal bearing is found to be higher than 120° partial journal bearing.

Originality/value

In open literature, it is rare to find the stability of a partial journal bearing lubricated with micropolar fluid. Very few researchers have studied the combined effect of eccentricities and micropolar lubricant parameters on the dynamic performance of such bearings. Hence, it is important to study the dynamic stability to explore the complete investigation of the performance of partial journal bearings with micropolar fluid.

Details

Industrial Lubrication and Tribology, vol. 76 no. 1
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 2 July 2018

Peiji Yang, Qi Yuan and Runlin Chen

The purpose of this study is to analyze the influence of high-temperature inlet oil on the comprehensive performance of tilting-pad bearing.

Abstract

Purpose

The purpose of this study is to analyze the influence of high-temperature inlet oil on the comprehensive performance of tilting-pad bearing.

Design/methodology/approach

Taking a tilting-pad bearing under high temperature of inlet oil in a natural gas compressor as an example, the experimental system was developed for the tilting-pad bearing applied in a real machine, and the experiment was performed. The bearing lubricating properties under different high temperatures of inlet oil were obtained, including oil film thickness on the pivot, temperature rise and the shaft vibration values at the bearing positions.

Findings

The experimental results showed that the vibration, the oil film thickness on the pivot and the pad temperature were not sensitive to the change in temperature of the inlet oil, but vibrations were observed under the specific speed. At the same speed, when oil temperature changed by 1°C, the bearing temperature rise did not exceed 0.2°C and change in oil film thickness on the pivot was 1 µm. The test results of the actual unit are in good agreement with the experimental results.

Originality/value

The vibration measurement scheme was presented, and an indirect measurement method of fulcrum thickness was proposed. The practicability of the measurement method and the accuracy of test results were verified by the comparison of the test results of the shaft vibration, the bearing pad temperature, the fulcrum oil film thickness and the theoretical calculation results. This study will provide an important reference for designing a tilting-pad bearing with high-temperature inlet oil.

Details

Industrial Lubrication and Tribology, vol. 70 no. 6
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 14 September 2023

Deepak Byotra and Sanjay Sharma

This study aims to understand how the texture shape, number of textures and addition of nanoparticle additives in lubricants impact the dynamic characteristics of journal bearing…

Abstract

Purpose

This study aims to understand how the texture shape, number of textures and addition of nanoparticle additives in lubricants impact the dynamic characteristics of journal bearing by comparing six different texture shapes like triangle, chevron, arc, circle, rectangle and elliptical applied in pressure-increasing region under various geometrical and operating conditions.

Design/methodology/approach

The finite element method approach has been employed to solve governing Reynold’s equation, assuming iso-viscous Newtonian fluid, for computation of performance parameters like stiffness and damping coefficient, threshold speed, etc. By using a regression model, the impact of adding nanoparticles Al2O3 and CuO to the base lubricant on viscosity variation is calculated for selected temperature ranges and weight fractions of nanoparticles.

Findings

The arc-shaped texture with an area density of 28.27%, eccentricity ratio of 0.2 and texture depth of 0.6 exhibited 35.22% higher direct stiffness and 41.4% higher damping coefficient compared to the lowest value in the circle-shaped texture. Increasing the number of arc-shaped textures on the bearing surface with low area density led to declining stiffness and damping parameters. However, with nanoparticle additives, the arc-shaped texture further showed 10.75% and 8.11% improvement in stiffness and 9.99% and 4.87% enhancement in damping coefficient for Al2O3 and CuO, respectively, at 90 °C temperature and 0.5% weight fraction.

Originality/value

By understanding the influence of texture shapes on the dynamic characteristics, engineers can design bearings that exhibit improved stability and enhance overall performance.

Details

Industrial Lubrication and Tribology, vol. 75 no. 9
Type: Research Article
ISSN: 0036-8792

Keywords

1 – 10 of 61