Search results

1 – 10 of over 4000
Article
Publication date: 18 March 2022

Xiping Yang, Yonghong Fu and Jinghu Ji

The purpose of this paper is to find the influence of surface bump texture combination characteristics on friction-wear properties so as to provide a basis for the selection of…

Abstract

Purpose

The purpose of this paper is to find the influence of surface bump texture combination characteristics on friction-wear properties so as to provide a basis for the selection of the bump texture combination scheme on the surface of the roll.

Design/methodology/approach

In this paper, six groups of different bump texture combination characteristics and their processing methods are introduced, of which three groups are regular distribution with different spacing and three groups are random distribution with different spacing. Then the effect of bump textures with different spacing, regular and random distribution on friction-wear properties was studied by ring block friction-wear experiments.

Findings

The results show that the friction coefficient of random distribution texture surface is lower than that of regular texture surface under the same spacing condition. In the regular distribution, the friction coefficient decreases with the increase of texture spacing. In the random distribution, the friction coefficient increases at first and then decreases with the increase of texture spacing. In addition, the wear resistance of textured surface is significantly higher than that of smooth surface because of the higher microhardness of the textured area. The attenuation ratio of textured surface roughness decreases with the increase of the distance between adjacent textures.

Originality/value

At present, the research on roller surface friction-wear is mainly based on the change of the overall surface roughness. However, there are few reports on the influence of the combination characteristics of laser bump texture on friction-wear from the microscopic scale.

Details

Industrial Lubrication and Tribology, vol. 74 no. 5
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 8 January 2018

Shuwen Wang, Feiyan Yan and Ao Chen

The purpose of this paper is to investigate the tribological effects of laser surface texturing (LST) and residual stress on functional surfaces.

Abstract

Purpose

The purpose of this paper is to investigate the tribological effects of laser surface texturing (LST) and residual stress on functional surfaces.

Design/methodology/approach

Three different surface textures (circular dimple, elliptical dimple and groove) with two different textured area ratios (10 and 20 per cent) are designed and fabricated by a Picosecond Nd YAG Laser machine. The friction and wear performance of textured specimens is tested using a UMT-2 friction and wear testing machine in mixed lubrication.

Findings

Test results show that elliptical dimples exhibit the best performance in wear resistance, circular dimples in friction reduction and grooves in stabilization of friction. The surfaces with larger textured area density exhibit better performance in both friction reduction and wear resistance. The improved performance of LST is the coupled effect of surface texture and residual stress.

Originality/value

The findings of this study may provide guidance for optimal design of functional surface textures in reciprocating sliding contacts under mixed or hydrodynamic lubrication, which can be used in automotive and other industrial applications.

Details

Industrial Lubrication and Tribology, vol. 70 no. 1
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 7 May 2020

Xiping Yang, Yonghong Fu, Jinghu Ji, Tianyang Chen and Caiyun Pan

The purpose of this paper is to describe the tribological characteristics with different area density of concave-convex micro-texture on the mold surface. It is a new technology…

Abstract

Purpose

The purpose of this paper is to describe the tribological characteristics with different area density of concave-convex micro-texture on the mold surface. It is a new technology to improve the quality of the workpiece to control the tribological properties through the application of concave-convex micro-texture on the mold surface.

Design/methodology/approach

Five groups of laser micro-texture with different area density (ratio of the concave-convex micro-texture area to the all-area) were processed on the surface of the mold steel, and the tribological properties were compared with the smooth surface of the reference sample.

Findings

The time of the running-in stage in different experimental groups was about 300 s. The fluctuation amplitude of concave-convex micro-texture friction coefficient is much larger than that of smooth plane specimen in the running-in stage. After the running-in stage, the friction coefficients were lower than that in the smooth condition and decreased with the increase of the concave-convex micro-texture area density. When the area density reached 25%, the friction coefficients no longer decreased significantly. In addition, the wear of concave-convex micro-texture surface is much lower than that of smooth surface and decreases with the increase of concave-convex micro-texture area density.

Originality/value

Domestic and foreign scholars have done a lot of research on the relationship between concave micro-texture and tribological properties. However, the object of this paper is a new concave-convex micro-texture, which is rarely studied in the field of tribology.

Peer review

The peer review history for this article is available at: https://publons.com/publon/10.1108/ILT-03-2020-0081/

Details

Industrial Lubrication and Tribology, vol. 72 no. 10
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 1 January 2006

Antonio Armillotta

Test the detail resolution of fused deposition modeling (FDM) in the direct manufacture of rapid prototypes with textured surfaces.

4686

Abstract

Purpose

Test the detail resolution of fused deposition modeling (FDM) in the direct manufacture of rapid prototypes with textured surfaces.

Design/methodology/approach

A benchmark part carrying regular surface patterns with different feature sizes and aspect ratios has been manufactured on a FDM system with different build orientations. Layered parts have been inspected to detect the occurrence of quality defects on textured surfaces.

Findings

The experiments reveal the ability of currently available FDM systems to enhance prototype surfaces with form details on a millimeter scale. Results assist in identifying conditions which need to be satisfied in order to successfully reproduce generic texture geometries.

Research limitations/implications

Although the testing method can be applied to any layered manufacturing technique, results are limited to a specific process, and may be influenced by technical improvements of commercial fabrication systems.

Practical implications

A first contribution is given to a full feasibility assessment of direct texturing, which potentially appears as more responsive and cost‐effective solution than current post‐finishing practices.

Originality/value

The paper proposes a systematic approach to the manufacture of textured parts by rapid prototyping techniques. The analysis of surface appearance in the presence of small‐scale form details adds a novel aspect to current approaches to performance benchmarking, which typically focus on form errors and roughness of plain surfaces.

Details

Rapid Prototyping Journal, vol. 12 no. 1
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 5 January 2022

Yonghong Fu, Jie Yang, Hao Wang and Yuyang He

This study aims to investigate the efficacy of micro dimple in inhibiting stick-slip phenomenon on the sliding guideway.

Abstract

Purpose

This study aims to investigate the efficacy of micro dimple in inhibiting stick-slip phenomenon on the sliding guideway.

Design/methodology/approach

In this study, micro-dimples were fabricated by laser on surfaces of steel disk and guideway. The disks and guideways were respectively performed pin-on-disk tribological tests and working condition experiments to study differences in lubrication condition and friction stability between textured and untextured surfaces.

Findings

Micro-dimples help reduce critical sliding speed that allows contact surfaces to enter in hydrodynamic lubrication regime. This increases hydrodynamic lubrication range and narrows speed range where stick-slip phenomenon can occur, enhancing sliding guideway’s adaptability for broader working conditions. Furthermore, friction stability on the textured surface improved, lowering the occurrence possibility of stick-slip phenomenon. Finally, difference between static and kinetic frictions on the textured surface is lower relative to the untextured surface, which decreases the critical velocity when the stick-slip phenomenon occurs.

Originality/value

The results indicate that laser-textured micro-dimples are significantly conducive to inhibit stick-slip phenomenon, thus providing smoother movement for the guideway and eventually increasing precision of the machine.

Details

Industrial Lubrication and Tribology, vol. 74 no. 1
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 8 February 2016

Dawit Zenebe Segu and Pyung Hwang

– The purpose of this paper is to investigate and discuss the effect of multi-shape laser surface texturing (LST) steel surfaces on tribological performance.

509

Abstract

Purpose

The purpose of this paper is to investigate and discuss the effect of multi-shape laser surface texturing (LST) steel surfaces on tribological performance.

Design/methodology/approach

The textured surface with some specific formula arrays was fabricated by laser ablation process by combining patterns of circles and triangles, circles and squares and circles and ellipses. The tribological test was performed by a flat-on-flat tribometer under dry and lubrication conditions, and results were compared with that of untextured surface.

Findings

The results showed that the textured surface had better friction coefficient performance than the untextured surface due to hydrodynamic lubrication effect. Through an increase in sliding speed, the beneficial effect of LST performance was achieved under dry and lubrication conditions.

Originality/value

This paper develops multi-shape LST steel surfaces for improving the friction and wear performance under dry and lubrication conditions.

Details

Industrial Lubrication and Tribology, vol. 68 no. 1
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 8 March 2021

Jinlong Shen, Tong Zhang, Jimin Xu, Xiaojun LIU and Kun Liu

This paper aims to improve the tribological performance of grease-lubricated spherical plain bearings (SPBs) under heavy load, dimple-type textures were prepared by laser on the…

Abstract

Purpose

This paper aims to improve the tribological performance of grease-lubricated spherical plain bearings (SPBs) under heavy load, dimple-type textures were prepared by laser on the outer surface of the inner ring. The influence of roughness parameters of a textured surface on reducing friction coefficient and temperature rise was also explored.

Design/methodology/approach

This study adopts a laser processing method to fabricate dimple-type textures. Three-dimensional roughness parameters were used to characterize the textured surfaces. The friction coefficients of five SPBs with surface texture and one original commercially available SPB without surface texture under different nominal loads were measured on a self-established test rig. The data of temperature rise were obtained by nine embedded thermal couples.

Findings

The results indicate that SPBs with textures generally exhibit lower friction coefficients than the original SPB without textures. The dimple depth has a significant influence on improving the tribological performance, which coincides with the analysis by surface roughness parameters. A textured surface with negative Ssk and high Vvc has the minimum temperature rise.

Originality/value

As it is too difficult to arrange sensors into heavy-load SPBs, there are few reports about the temperature characteristics. Through nine embedded thermal couples, the distribution of temperature rise on the inner ring of SPBs was given in this study. The positive effect of surface texture on reducing temperature rise and friction coefficient was verified, which is beneficial for the design of heavy-load SPBs.

Details

Industrial Lubrication and Tribology, vol. 73 no. 3
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 18 September 2020

Fuying Zhang and Yuanhao Zhang

The purpose of this paper is to study the pumping efficiency of oil seals with different surface textures at different speeds, and the influence of the rotation direction of…

Abstract

Purpose

The purpose of this paper is to study the pumping efficiency of oil seals with different surface textures at different speeds, and the influence of the rotation direction of triangular texture on the sealing performance was further analyzed.

Design/methodology/approach

Based on the theory of elastohydrodynamic lubrication and the pumping mechanism of rotary shaft seals, establishing a numerical model of mixed lubrication in oil seal sealing area. The model is coupled with the lip surface texture parameters and the two-dimensional average Reynolds equation considering the surface roughness.

Findings

The results show that the application of lip surface texture technology has obvious influence on the oil film thickness, friction torque and pumping rate of oil seal. The triangular texture has the most significant effect on the increase of pump suction rate. When the rotation direction of triangular texture is 315 degrees, the pumping rate of oil seal is the largest compared with the other seven directions.

Originality/value

The model has a comprehensive theoretical guidance for the design of new oil seal products, which provides a certain basis for the application of surface texture technology in the field of sealing in the future.

Peer review

The peer review history for this article is available at: https://publons.com/publon/10.1108/ILT-06-2020-0198/

Details

Industrial Lubrication and Tribology, vol. 73 no. 1
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 6 December 2019

Ke Li, Xiuping Dong, Mingji Huang and Ping Chen

This paper aims to improve the wear resistance of metal rubber microfilaments and the service life. The effect of surface texture by laser processing on the fretting friction…

Abstract

Purpose

This paper aims to improve the wear resistance of metal rubber microfilaments and the service life. The effect of surface texture by laser processing on the fretting friction properties of metal rubber microfilaments was studied.

Design/methodology/approach

The LQL-F20A laser marking machine was used to fabricate a ring groove array with equal spacing and dense arrangement on the surface of metal rubber microfilaments. The test was carried out with a self-made micro-dynamic frictional tester. The topography of the microfilaments was observed by scanning electron microscopy and analyzed.

Findings

It has shown that laser surface texturing can improve the wear performance of microfilaments. Under the same experimental conditions, the microfilaments of textured surface has a smaller depth of wear than un-textured specimen. The wear resistance increases with the increase of texture density. The friction coefficient of textured specimen is significantly reduced compared with un-textured specimen, and the surface texture density of microfilaments has little influence on the friction coefficient after stabilization. In the stage of stable fretting wear, the wear depth will be more with the increase of the load.

Originality/value

There is little research on metal rubber microfilaments tribological properties. In this paper, the effect of laser texturing of microfilaments on micro-dynamic friction properties was studied by friction machine to provide a reference for the application of metal rubber in aerospace, medical and other fields.

Details

Industrial Lubrication and Tribology, vol. 72 no. 3
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 27 November 2018

Chao Chen, Xiaojing Wang, Yifan Shen, Zhaolun Li and Jian Dong

Surface texturing has emerged in the past two decades as a viable option of surface engineering, resulting in significant improvement in wear resistance and friction coefficient…

Abstract

Purpose

Surface texturing has emerged in the past two decades as a viable option of surface engineering, resulting in significant improvement in wear resistance and friction coefficient. The purpose of this study is to find the appropriate surface texture to reduce vibration and improve the stability of journal bearings.

Design/methodology/approach

Micro-dimples, evenly distributed in a square array, were selected as the texture pattern and formed on the lower surface of bush by the laser surface texturing technique. Experiments were carried out to evaluate the effects of micro-dimples under different depths, densities and distributions.

Findings

The results are summarized in the form of shaft center orbits, waterfall illustrations and Hilbert-Huang transforms. In the entire test, it was found that an optimum geometric and distributive range of micro-dimples exists, where vibration acceleration can be decreased at least 3dB and stability can be greatly improved.

Originality/value

A majority of researchers devoted to studying on static characteristics, such as friction coefficient, load carrying capacity, pressure distribution and cavitation model. Besides, the influence of surface texture on stability of rotor-journal bearing system was rarely investigated and the recent examples can be found in Refs. (Ausas et al. 2007). However, a complete study of textured journal bearings has not been undertaken in the dynamic properties. Therefore, the purpose of this paper is to experimentally investigate the comprehensive effects of density, depth and distribution of micro-dimples on bearing vibration and stability.

Details

Industrial Lubrication and Tribology, vol. 71 no. 2
Type: Research Article
ISSN: 0036-8792

Keywords

1 – 10 of over 4000