Search results

1 – 10 of 14
Article
Publication date: 27 March 2023

Y. Wu, Z.J. Zhang, L.D. Chen and X. Zhou

Laser soldering has attracted attention as an alternative soldering process for microsoldering due to its localized and noncontact heating, a rapid rise and fall in temperature…

Abstract

Purpose

Laser soldering has attracted attention as an alternative soldering process for microsoldering due to its localized and noncontact heating, a rapid rise and fall in temperature, fluxless and easy automation compared to reflow soldering.

Design/methodology/approach

In this study, the metallurgical and mechanical properties of the Sn3.0Ag0.5Cu/Ni-P joints after laser and reflow soldering and isothermal aging were compared and analyzed.

Findings

In the as-soldered Sn3.0Ag0.5Cu/Ni-P joints, a small granular and loose (Cu,Ni)6Sn5 intermetallic compound (IMC) structure was formed by laser soldering regardless of the laser energy, and a long and needlelike (Cu,Ni)6Sn5 IMC structure was generated by reflow soldering. During aging at 150°C, the growth rate of the IMC layer was faster by laser soldering than by reflow soldering. The shear strength of as-soldered joints for reflow soldering was similar to that of laser soldering with 7.5 mJ, which sharply decreased from 0 to 100 h for both cases and then was maintained at a similar level with increasing aging time.

Originality/value

Laser soldering with certain energy is effective for reducing the thickness of IMCs, and ensuring the mechanical property of the joints was similar to reflow soldering.

Details

Microelectronics International, vol. 41 no. 1
Type: Research Article
ISSN: 1356-5362

Keywords

Article
Publication date: 12 December 2023

Ziru Zhou, Songlin Zheng, Jiahuan Chen, Ting Zhang, Zhen He and Yuxin Wang

The high specific strength makes magnesium alloys have a wide range of applications in aerospace, military, automotive, marine and construction industries. However, its poor…

Abstract

Purpose

The high specific strength makes magnesium alloys have a wide range of applications in aerospace, military, automotive, marine and construction industries. However, its poor corrosion resistance and weldability have limited its development and application. Friction stir welding (FSW) can effectively avoid the defects of fusion welding. However, the microstructure, mechanical properties and corrosion behavior of FSW joints in magnesium alloys vary among different regions. The purpose of this paper is to review the corrosion of magnesium alloy FSW joints, and to summarize the protection technology of welded joints.

Design/methodology/approach

The corrosion of magnesium alloy FSW joints includes electrochemical corrosion and stress corrosion. This paper summarizes corrosion protection techniques for magnesium alloys FSW joints, focusing on composition, microstructure changes and surface treatment methods.

Findings

Currently, this research is mainly focused on enhancing the corrosion resistance of magnesium alloy FSW joints by changing compositions, structural modifications and surface coating technologies. Refinement of the grains can be achieved by adjusting welding process parameters, which in turn minimizes the effects of the second phase on the alloy’s corrosion resistance.

Originality/value

This paper presents a comprehensive review on the corrosion and protection of magnesium alloys FSW joints, covering the latest research advancements and practical applications. It aims to equip researchers with a better insight into the field and inspire new studies on this topic.

Details

Anti-Corrosion Methods and Materials, vol. 71 no. 1
Type: Research Article
ISSN: 0003-5599

Keywords

Article
Publication date: 23 February 2024

Guangwei Liang, Zhiming Gao, Cheng-Man Deng and Wenbin Hu

The purpose of this study is to reveal the effect of nano-Al2O3 particle addition on the nucleation/growth kinetics, microhardness, wear resistance and corrosion resistance of…

Abstract

Purpose

The purpose of this study is to reveal the effect of nano-Al2O3 particle addition on the nucleation/growth kinetics, microhardness, wear resistance and corrosion resistance of Co–P–xAl2O3 nanocomposite plating.

Design/methodology/approach

The kinetics and properties of Co–P–xAl2O3 nanocomposite plating prepared by electroplating were investigated by electrochemical measurements, scanning electron microscopy, X-ray diffraction, X-ray photoelectron spectroscopy, Vickers microhardness measurement, SRV5 friction and wear tester and atomic force microscopy.

Findings

A 12 g/L nano-Al2O3 addition in the plating solution can transform the nucleation/growth kinetics of the plating from the 3D progressive model to the 3D instantaneous model. The microhardness of the plating increased with the increase of nano-Al2O3 content in plating. The wear resistance of the plating did not adhere strictly to Archard’s law. An even and denser corrosion product film was generated due to the finer grains, with a high corrosion resistance.

Originality/value

The effect of different nano-Al2O3 addition on the nucleation/growth kinetics and properties of Co–P–xAl2O3 nanocomposite plating was investigated, and an anticorrosion mechanism of Co–P–xAl2O3 nanocomposite plating was proposed.

Details

Anti-Corrosion Methods and Materials, vol. 71 no. 3
Type: Research Article
ISSN: 0003-5599

Keywords

Article
Publication date: 19 January 2024

Zhengwei Song, Zhi-Hui Xie, Lifeng Ding and Shengjian Zhang

This paper aims to comprehensively review the preparation methods of superhydrophobic surfaces (SHPS) for corrosion protection of Mg alloy in recent years.

Abstract

Purpose

This paper aims to comprehensively review the preparation methods of superhydrophobic surfaces (SHPS) for corrosion protection of Mg alloy in recent years.

Design/methodology/approach

The preparation methods, wettability and corrosion resistance of SHPS on Mg alloy in the past three years are systematically described in this paper.

Findings

Two types of SHPS, including single-layer and multilayer coatings for corrosion protection of Mg alloy are summarized. Preparing multilayered coatings with multifunction is the current trend in developing SHPS on Mg alloy.

Originality/value

This paper reviewed the preparation methods and corrosion resistance of SHPS on Mg alloys. It provides a valuable reference for researchers to develop highly durable SHPS with excellent corrosion resistance for Mg alloys.

Details

Anti-Corrosion Methods and Materials, vol. 71 no. 2
Type: Research Article
ISSN: 0003-5599

Keywords

Article
Publication date: 21 December 2022

Vimal Kumar Deshmukh, Mridul Singh Rajput and H.K. Narang

The purpose of this paper is to present current state of understanding on jet electrodeposition manufacturing; to compare various experimental parameters and their implication on…

Abstract

Purpose

The purpose of this paper is to present current state of understanding on jet electrodeposition manufacturing; to compare various experimental parameters and their implication on as deposited features; and to understand the characteristics of jet electrodeposition deposition defects and its preventive procedures through available research articles.

Design/methodology/approach

A systematic review has been done based on available research articles focused on jet electrodeposition and its characteristics. The review begins with a brief introduction to micro-electrodeposition and high-speed selective jet electrodeposition (HSSJED). The research and developments on how jet electrochemical manufacturing are clustered with conventional micro-electrodeposition and their developments. Furthermore, this study converges on comparative analysis on HSSJED and recent research trends in high-speed jet electrodeposition of metals, their alloys and composites and presents potential perspectives for the future research direction in the final section.

Findings

Edge defect, optimum nozzle height and controlled deposition remain major challenges in electrochemical manufacturing. On-situ deposition can be used as initial structural material for micro and nanoelectronic devices. Integration of ultrasonic, laser and acoustic source to jet electrochemical manufacturing are current trends that are promising enhanced homogeneity, controlled density and porosity with high precision manufacturing.

Originality/value

This paper discusses the key issue associated to high-speed jet electrodeposition process. Emphasis has been given to various electrochemical parameters and their effect on deposition. Pros and cons of variations in electrochemical parameters have been studied by comparing the available reports on experimental investigations. Defects and their preventive measures have also been discussed. This review presented a summary of past achievements and recent advancements in the field of jet electrochemical manufacturing.

Article
Publication date: 22 September 2023

Chen Chen, Liang Zhang, Xi Huang and Xiao Lu

The purpose of this study is to delve into the mechanism of Si3N4 nanowires (NWs) in Sn-based solder, thereby furnishing a theoretical foundation for the expeditious design and…

Abstract

Purpose

The purpose of this study is to delve into the mechanism of Si3N4 nanowires (NWs) in Sn-based solder, thereby furnishing a theoretical foundation for the expeditious design and practical implementation of innovative lead-free solder materials in the electronic packaging industry.

Design/methodology/approach

This study investigates the effect of adding Si3N4 NWs to Sn58Bi solder in various mass fractions (0, 0.1, 0.2, 0.4, 0.6 and 0.8 Wt.%) for modifying the solder and joining the Cu substrate. Meanwhile, the melting characteristics and wettability of solder, as well as the microstructure, interfacial intermetallic compound (IMC) and mechanical properties of joint were evaluated.

Findings

The crystal plane spacing and lattice constant of Sn and Bi phase increase slightly. A minor variation in the Sn58Bi solder melting point was caused, while it does not impact its functionality. An appropriate Si3N4 NWs content (0.2∼0.4 Wt.%) significantly improves its wettability, and modifies the microstructure and interfacial IMC layer. The shear strength increases by up to 10.74% when adding 0.4 Wt.% Si3N4 NWs, and the failure mode observed is brittle fracture mainly. However, excessive Si3N4 will cause aggregation at the junction between the solder matrix and IMC layer, this will be detrimental to the joint.

Originality/value

The Si3N4 NWs were first used for the modification of lead-free solder materials. The relative properties of composite solder and joints were evaluated from different aspects, and the optimal ratio was obtained.

Details

Soldering & Surface Mount Technology, vol. 36 no. 1
Type: Research Article
ISSN: 0954-0911

Keywords

Article
Publication date: 11 October 2023

Sabrina Sgambati and Luís Carvalho

This paper aims to investigate the competitive potential of different classes of municipalities within larger metropolitan areas, considering three dimensions of place…

Abstract

Purpose

This paper aims to investigate the competitive potential of different classes of municipalities within larger metropolitan areas, considering three dimensions of place competitiveness, associated to contemporary economic recovery agendas: the “dual transition” (green and digital) and socio-economic resilience.

Design/methodology/approach

The proposed methodology is divided in two stages, the first aiming at developing a new Index of Urban Competitiveness, based on three key dimensions of place development, by using principal component analysis and hierarchical cluster analysis; the second intends to identify municipalities’ main competitive assets, throughout the examination of the existing links between the overall competitiveness index and intra-metropolitan place conditions in each dimension. This methodology is applied to the metropolitan areas of Porto and Lisbon.

Findings

The analysis shows a weak link between population size and urban competitiveness, suggesting that economic recovery investments primarily targeting larger municipalities will not necessarily lead to greater metropolitan competitive advantages. On the contrary, taking into consideration place-based interventions for different “clubs” of municipalities would more likely contribute to enhance competitive performance and valorise territorial assets. Furthermore, while the relationship between competitiveness and environmental performance appears to be non-linear, digitalization and economic and social resilience prove to be key for urban competitive potential.

Originality/value

By drawing on contemporary notions of urban competitiveness, the work proposes a revised method to evaluate competitiveness, latent qualities and intrinsic features of places, constituting an initial step to conceive suitable metropolitan development and investment strategies for economic recovery.

Details

Journal of Place Management and Development, vol. 17 no. 1
Type: Research Article
ISSN: 1753-8335

Keywords

Article
Publication date: 22 February 2024

Yuzhuo Wang, Chengzhi Zhang, Min Song, Seongdeok Kim, Youngsoo Ko and Juhee Lee

In the era of artificial intelligence (AI), algorithms have gained unprecedented importance. Scientific studies have shown that algorithms are frequently mentioned in papers…

84

Abstract

Purpose

In the era of artificial intelligence (AI), algorithms have gained unprecedented importance. Scientific studies have shown that algorithms are frequently mentioned in papers, making mention frequency a classical indicator of their popularity and influence. However, contemporary methods for evaluating influence tend to focus solely on individual algorithms, disregarding the collective impact resulting from the interconnectedness of these algorithms, which can provide a new way to reveal their roles and importance within algorithm clusters. This paper aims to build the co-occurrence network of algorithms in the natural language processing field based on the full-text content of academic papers and analyze the academic influence of algorithms in the group based on the features of the network.

Design/methodology/approach

We use deep learning models to extract algorithm entities from articles and construct the whole, cumulative and annual co-occurrence networks. We first analyze the characteristics of algorithm networks and then use various centrality metrics to obtain the score and ranking of group influence for each algorithm in the whole domain and each year. Finally, we analyze the influence evolution of different representative algorithms.

Findings

The results indicate that algorithm networks also have the characteristics of complex networks, with tight connections between nodes developing over approximately four decades. For different algorithms, algorithms that are classic, high-performing and appear at the junctions of different eras can possess high popularity, control, central position and balanced influence in the network. As an algorithm gradually diminishes its sway within the group, it typically loses its core position first, followed by a dwindling association with other algorithms.

Originality/value

To the best of the authors’ knowledge, this paper is the first large-scale analysis of algorithm networks. The extensive temporal coverage, spanning over four decades of academic publications, ensures the depth and integrity of the network. Our results serve as a cornerstone for constructing multifaceted networks interlinking algorithms, scholars and tasks, facilitating future exploration of their scientific roles and semantic relations.

Details

Aslib Journal of Information Management, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2050-3806

Keywords

Article
Publication date: 15 February 2024

Kai Deng, Liang Zhang, Chen Chen, Xiao Lu, Lei Sun and Xing-Yu Guo

This study aims to explore the feasibility of adding Si3N4 nanoparticles to Sn58Bi and provides a theoretical basis for designing and applying new lead-free solder materials for…

Abstract

Purpose

This study aims to explore the feasibility of adding Si3N4 nanoparticles to Sn58Bi and provides a theoretical basis for designing and applying new lead-free solder materials for the electronic packaging industry.

Design/methodology/approach

In this paper, Sn58Bi-xSi3N4 (x = 0, 0.2, 0.4, 0.6, 0.8, 1.0 Wt.%) was prepared for bonding Cu substrate, and the changes in thermal properties, wettability, microstructure, interfacial intermetallic compound and mechanical properties of the composite solder were systematically studied.

Findings

The experiment results demonstrate that including Si3N4 nanoparticles does not significantly impact the melting point of Sn58Bi solder, and the undercooling degree of solder only fluctuates slightly. The molten solder spreading area reached a maximum of 96.17 mm2, raised by 19.41% relative to those without Si3N4, and the wetting angle was the smallest at 0.6 Wt.% of Si3N4, with a minimum value of 8.35°. When the Si3N4 nanoparticles reach 0.6 Wt.%, the solder joint microstructure is significantly refined. Appropriately adding Si3N4 nanoparticles will slightly increase the solder alloy hardness. When the concentration of Si3N4 reaches 0.6 Wt.%, the joints shear strength reached 45.30 MPa, representing a 49.85% increase compared to those without additives. A thorough examination indicates that legitimately incorporating Si3N4 nanoparticles into Sn58Bi solder can enhance its synthetical performance, and 0.6 Wt.% is the best addition amount in our test setting.

Originality/value

In this paper, Si3N4 nanoparticles were incorporated into Sn58Bi solder, and the effects of different contents of Si3N4 nanoparticles on Sn58Bi solder were investigated from various aspects.

Details

Soldering & Surface Mount Technology, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0954-0911

Keywords

Article
Publication date: 22 December 2023

Zhengwei Song, Shengjian Zhang, Lifeng Ding, Xuejing Wu and Ning Long

The purpose of this paper was prepared a Ni-based superhydrophobic coating on the surface of copper to enhence its corrosion resistance. The superhydrophobic coating (SHPC) has…

Abstract

Purpose

The purpose of this paper was prepared a Ni-based superhydrophobic coating on the surface of copper to enhence its corrosion resistance. The superhydrophobic coating (SHPC) has proven to be an effective surface treatment in corrosion protection. In this paper, a Ni-based SHPC was prepared on the surface of copper (Cu) to enhance its corrosion resistance.

Design/methodology/approach

The coating was prepared through a two-step electrodeposition process. The first step involves the formation of a micro-nano structure Ni layer formed by an electrodeposition process. Subsequently, the polysiloxane layer was deposited on the Ni surface to create an SHPC. The morphology, composition, structure, wettability and corrosion resistance of the coating were characterized and discussed.

Findings

The results show that the water contact angle of the as-prepared coating reaches 155.5°±1.0°. The corrosion current density (icorr = 3.90 × 10−9 A·cm−2) decreased by three orders of magnitude compared to the substrate, whereas |Z|f = 0.01Hz (2.40 × 106 Ω·cm2) increased by three orders of magnitude. It indicated that the prepared coating has excellent superhydrophobicity and high corrosion resistance, which can provide better protection for the substrate.

Originality/value

The prepared coating provides long-lasting protection for Cu and other metals and offers valuable data for developing SHPCs.

Details

Anti-Corrosion Methods and Materials, vol. 71 no. 1
Type: Research Article
ISSN: 0003-5599

Keywords

1 – 10 of 14