Search results

1 – 10 of 38
Article
Publication date: 20 July 2022

Wangyun Li, Linqiang Liu and Xingmin Li

This study aims to experimentally assess the effect of thickness and preparation direction on the damping properties of Sn58Bi and Sn3.0Ag0.5Cu solders.

Abstract

Purpose

This study aims to experimentally assess the effect of thickness and preparation direction on the damping properties of Sn58Bi and Sn3.0Ag0.5Cu solders.

Design/methodology/approach

Sn58Bi and Sn3.0Ag0.5Cu solder strips with different thicknesses were prepared from the bulk in longitudinal and horizontal directions, and the ratio of loss modulus and storage modulus of the samples was measured by the dynamic mechanical analysis method as the index of damping properties.

Findings

Sn58Bi and Sn3.0Ag0.5Cu solders exhibited viscoelastic relaxation, and their damping properties decreased with decreasing thickness. The damping properties of both solders had no obvious difference in longitudinal and horizontal directions. Sn58Bi has a more obvious high-temperature damping background than Sn3.0Ag0.5Cu solder. In addition, compared with Sn58Bi solder, Sn3.0Ag0.5Cu solder had an obvious internal friction peak, which moved toward high temperature with increasing frequency. The activation energies of Sn58Bi solder with a thickness of 0.5 mm at the longitudinal and horizontal directions were 0.84 and 0.67 eV, respectively, which were 0.39 and 0.53 eV, respectively, for the Sn3.0Ag0.5Cu solder.

Originality/value

The damping properties of Sn58Bi and Sn3.0Ag0.5Cu solder decreased with decreasing thickness, while their damping properties changed insignificantly when they were prepared from different directions. The internal friction peak of Sn3.0Ag0.5Cu solder moved to higher temperatures with increasing frequency.

Details

Soldering & Surface Mount Technology, vol. 35 no. 2
Type: Research Article
ISSN: 0954-0911

Keywords

Article
Publication date: 15 February 2024

Kai Deng, Liang Zhang, Chen Chen, Xiao Lu, Lei Sun and Xing-Yu Guo

This study aims to explore the feasibility of adding Si3N4 nanoparticles to Sn58Bi and provides a theoretical basis for designing and applying new lead-free solder materials for…

Abstract

Purpose

This study aims to explore the feasibility of adding Si3N4 nanoparticles to Sn58Bi and provides a theoretical basis for designing and applying new lead-free solder materials for the electronic packaging industry.

Design/methodology/approach

In this paper, Sn58Bi-xSi3N4 (x = 0, 0.2, 0.4, 0.6, 0.8, 1.0 Wt.%) was prepared for bonding Cu substrate, and the changes in thermal properties, wettability, microstructure, interfacial intermetallic compound and mechanical properties of the composite solder were systematically studied.

Findings

The experiment results demonstrate that including Si3N4 nanoparticles does not significantly impact the melting point of Sn58Bi solder, and the undercooling degree of solder only fluctuates slightly. The molten solder spreading area reached a maximum of 96.17 mm2, raised by 19.41% relative to those without Si3N4, and the wetting angle was the smallest at 0.6 Wt.% of Si3N4, with a minimum value of 8.35°. When the Si3N4 nanoparticles reach 0.6 Wt.%, the solder joint microstructure is significantly refined. Appropriately adding Si3N4 nanoparticles will slightly increase the solder alloy hardness. When the concentration of Si3N4 reaches 0.6 Wt.%, the joints shear strength reached 45.30 MPa, representing a 49.85% increase compared to those without additives. A thorough examination indicates that legitimately incorporating Si3N4 nanoparticles into Sn58Bi solder can enhance its synthetical performance, and 0.6 Wt.% is the best addition amount in our test setting.

Originality/value

In this paper, Si3N4 nanoparticles were incorporated into Sn58Bi solder, and the effects of different contents of Si3N4 nanoparticles on Sn58Bi solder were investigated from various aspects.

Details

Soldering & Surface Mount Technology, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0954-0911

Keywords

Article
Publication date: 12 September 2023

Zhili Zhao, Mingqiang Zhang, Xi Meng, Zhenkun Li, Jiazhe Li, Luying Qiu and Zeyu Ren

The author proposed a friction plunge micro-welding (FPMW) method and applied it to column grid array packaging to realize the connection of copper columns without precision molds…

Abstract

Purpose

The author proposed a friction plunge micro-welding (FPMW) method and applied it to column grid array packaging to realize the connection of copper columns without precision molds assisted positioning. The purpose of this paper is to study the flow behavior of the solder undergoing frictional thermo-mechanical action during the FPMW and to determine the source of the solders in the micro-zones with different microstructure characteristics near the solder/Cu column friction interface.

Design/methodology/approach

Three kinds of Sn58Bi/SAC305 and SAC305/Pb90Sn composite solder samples were designed to study the flow behavior of the solder during FPMW using Bi and Pb as tracer elements.

Findings

The results show that most of the solders in the position occupied by the copper column was softened and plasticized during the welding process and was extruded to side of the copper column, flowing axially, circumferentially and radially along a trajectory similar to a conical spiral line. Under the drive of the tangential friction force and the radial hold-tight force, the extruded out visco-plastic solders fully mixed with the visco-plastic solders on the sides of the copper column, and bonded with the solders that deformed plastically on the periphery, so that a stir zone and a dynamic recrystallization zone finally evolved. The outside plastically deformed solders evolved into a thermo-mechanical affected zone.

Originality/value

The flow behavior of the solder during the FPMW was determined, as well as the source of the solders in micro-zones with different microstructure characteristics.

Details

Soldering & Surface Mount Technology, vol. 36 no. 1
Type: Research Article
ISSN: 0954-0911

Keywords

Article
Publication date: 1 November 2021

Yang Liu, Yuxiong Xue, Min Zhou, Rongxing Cao, Xianghua Zeng, Hongxia Li, Shu Zheng and Shuang Zhang

The purpose of this paper is to investigate the effects of Sn-Ag-x leveling layers on the mechanical properties of SnBi solder joints. Four Sn-Ag-x (Sn-3.0Ag-0.5Cu…

Abstract

Purpose

The purpose of this paper is to investigate the effects of Sn-Ag-x leveling layers on the mechanical properties of SnBi solder joints. Four Sn-Ag-x (Sn-3.0Ag-0.5Cu, Sn-0.3Ag-0.7Cu, Sn-0.3Ag-0.7Cu-0.5 Bi-0.05Ni and Sn-3.0Ag-3.0 Bi-3.0In) leveling layers were coated on Cu pads to prepare SnBi/Sn-Ag-x/Cu solder joints. The microstructure, hardness, shear strength and fracture morphology of solder joints before and after aging were studied.

Design/methodology/approach

The interfacial brittleness of the SnBi low-temperature solder joint is a key problem affecting its reliability. The purpose of this study is to improve the mechanical properties of the SnBi solder joint.

Findings

Owing to the addition of the leveling layers, the grain size of the ß-Sn phase in the SnBi/Sn-Ag-x/Cu solder joint is significantly larger than that in the SnBi/Cu eutectic solder joint. Meanwhile, the hardness of the solder bulk in the SnBi/Cu solder joint shows a decrease trend because of the addition of the leveling layers. The SnBi/Cu solder joint shows obvious strength drop and interfacial brittle fracture after aging. Through the addition of the Sn-Ag-x layers, the brittle failure caused by aging is effectively suppressed. In addition, the Sn-Ag-x leveling layers improve the shear strength of the SnBi/Cu solder joint after aging. Among them, the SnBi/SACBN/Cu solder joint shows the highest shear strength.

Originality/value

This work suppresses the interfacial brittleness of the SnBi/Cu solder joint after isothermal aging by adding Sn-Ag-x leveling layers on the Cu pads. It provides a way to improve the mechanical performances of the SnBi solder joint.

Details

Soldering & Surface Mount Technology, vol. 34 no. 3
Type: Research Article
ISSN: 0954-0911

Keywords

Article
Publication date: 22 September 2023

Chen Chen, Liang Zhang, Xi Huang and Xiao Lu

The purpose of this study is to delve into the mechanism of Si3N4 nanowires (NWs) in Sn-based solder, thereby furnishing a theoretical foundation for the expeditious design and…

Abstract

Purpose

The purpose of this study is to delve into the mechanism of Si3N4 nanowires (NWs) in Sn-based solder, thereby furnishing a theoretical foundation for the expeditious design and practical implementation of innovative lead-free solder materials in the electronic packaging industry.

Design/methodology/approach

This study investigates the effect of adding Si3N4 NWs to Sn58Bi solder in various mass fractions (0, 0.1, 0.2, 0.4, 0.6 and 0.8 Wt.%) for modifying the solder and joining the Cu substrate. Meanwhile, the melting characteristics and wettability of solder, as well as the microstructure, interfacial intermetallic compound (IMC) and mechanical properties of joint were evaluated.

Findings

The crystal plane spacing and lattice constant of Sn and Bi phase increase slightly. A minor variation in the Sn58Bi solder melting point was caused, while it does not impact its functionality. An appropriate Si3N4 NWs content (0.2∼0.4 Wt.%) significantly improves its wettability, and modifies the microstructure and interfacial IMC layer. The shear strength increases by up to 10.74% when adding 0.4 Wt.% Si3N4 NWs, and the failure mode observed is brittle fracture mainly. However, excessive Si3N4 will cause aggregation at the junction between the solder matrix and IMC layer, this will be detrimental to the joint.

Originality/value

The Si3N4 NWs were first used for the modification of lead-free solder materials. The relative properties of composite solder and joints were evaluated from different aspects, and the optimal ratio was obtained.

Details

Soldering & Surface Mount Technology, vol. 36 no. 1
Type: Research Article
ISSN: 0954-0911

Keywords

Article
Publication date: 3 January 2017

Hao Zhang, Yang Liu, Fenglian Sun, Gaofang Ban and Jiajie Fan

This paper aimed to investigate the effects of nano-copper particles on the melting behaviors, wettability and defect formation mechanism of the Sn58Bi composite solder pastes.

Abstract

Purpose

This paper aimed to investigate the effects of nano-copper particles on the melting behaviors, wettability and defect formation mechanism of the Sn58Bi composite solder pastes.

Design/methodology/approach

In this paper, the mechanical stirring method was used to get the nano-composite solder pastes.

Findings

Experimental results indicated that the addition of 3 wt.% (weight percentage) 50 nm copper particles showed limited effects on the melting behaviors of the Sn58Bi composite solder paste. The spreading rate of the Sn58Bi composite solder paste showed a decreasing trend with the increase of the weight percentage of 50 nm copper particles from 0 to 3 wt.%. With the addition of copper particles of diameters 50 nm, 500 nm or 6.5 μm into the Sn58Bi solder paste, the porosities of the three types of solder pastes showed a similar trend. The porosity increased with the increase of the weight percentage of copper particles. Based on the experimental results, a model of the void formation mechanism was proposed. During reflow, the copper particles reacted with Sn in the matrix and formed intermetallic compounds, which gathered around the voids produced by the volatilization of flux. The exclusion of the voids was suppressed and eventually led to the formation of defects.

Originality/value

This study provides an optimized material for the second and third level packaging. A model of the void formation mechanism was proposed.

Details

Microelectronics International, vol. 34 no. 1
Type: Research Article
ISSN: 1356-5362

Keywords

Article
Publication date: 4 December 2023

Yang Liu, Xin Xu, Shiqing Lv, Xuewei Zhao, Yuxiong Xue, Shuye Zhang, Xingji Li and Chaoyang Xing

Due to the miniaturization of electronic devices, the increased current density through solder joints leads to the occurrence of electromigration failure, thereby reducing the…

56

Abstract

Purpose

Due to the miniaturization of electronic devices, the increased current density through solder joints leads to the occurrence of electromigration failure, thereby reducing the reliability of electronic devices. The purpose of this study is to propose a finite element-artificial neural network method for the prediction of temperature and current density of solder joints, and thus provide reference information for the reliability evaluation of solder joints.

Design/methodology/approach

The temperature distribution and current density distribution of the interconnect structure of electronic devices were investigated through finite element simulations. During the experimental process, the actual temperature of the solder joints was measured and was used to optimize the finite element model. A large amount of simulation data was obtained to analyze the neural network by varying the height of solder joints, the diameter of solder pads and the magnitude of current loads. The constructed neural network was trained, tested and optimized using this data.

Findings

Based on the finite element simulation results, the current is more concentrated in the corners of the solder joints, generating a significant amount of Joule heating, which leads to localized temperature rise. The constructed neural network is trained, tested and optimized using the simulation results. The ANN 1, used for predicting solder joint temperature, achieves a prediction accuracy of 96.9%, while the ANN 2, used for predicting solder joint current density, achieves a prediction accuracy of 93.4%.

Originality/value

The proposed method can effectively improve the estimation efficiency of temperature and current density in the packaging structure. This method prevails in the field of packaging, and other factors that affect the thermal, mechanical and electrical properties of the packaging structure can be introduced into the model.

Details

Soldering & Surface Mount Technology, vol. 36 no. 2
Type: Research Article
ISSN: 0954-0911

Keywords

Article
Publication date: 9 February 2024

Rizk Mostafa Shalaby and Mohamed Saad

The purpose of the present work is to study the impacts of rapid cooling and Tb rare-earth additions on the structural, thermal and mechanical behavior of Bi–0.5Ag lead-free solder

Abstract

Purpose

The purpose of the present work is to study the impacts of rapid cooling and Tb rare-earth additions on the structural, thermal and mechanical behavior of Bi–0.5Ag lead-free solder for high-temperature applications.

Design/methodology/approach

Effect of rapid solidification processing on structural, thermal and mechanical properties of Bi-Ag lead-free solder reinforced Tb rare-earth element.

Findings

The obtained results indicated that the microstructure consists of rhombohedral Bi-rich phase and Ag99.5Bi0.5 intermetallic compound (IMC). The addition of Tb could effectively reduce the onset and melting point. The elastic modulus of Tb-containing solders was enhanced to about 90% at 0.5 Tb. The higher elastic modulus may be attributed to solid solution strengthening effect, solubility extension, microstructure refinement and precipitation hardening of uniform distribution Ag99.5Bi0.5 IMC particles which can reasonably modify the microstructure, as well as inhibit the segregation and hinder the motion of dislocations.

Originality/value

It is recommended that the lead-free Bi-0.5Ag-0.5Tb solder be a candidate instead of common solder alloy (Sn-37Pb) for high temperature and high performance applications.

Details

Soldering & Surface Mount Technology, vol. 36 no. 2
Type: Research Article
ISSN: 0954-0911

Keywords

Article
Publication date: 15 February 2022

Xinmeng Zhai, Yue Chen, Yuefeng Li, Jun Zou, Mingming Shi and Bobo Yang

This study aims to study the mechanical, photoelectric, and thermal reliability of SAC307 solder joints with Ni-decorated MWCNTs for flip-chip light-emitting diode (LED) package…

Abstract

Purpose

This study aims to study the mechanical, photoelectric, and thermal reliability of SAC307 solder joints with Ni-decorated MWCNTs for flip-chip light-emitting diode (LED) package component during aging. By adding nanoparticles (Ni-multi-walled carbon nanotubes [MWCNTs]) to the solder paste, the shear strength and fatigue resistance of the brazed joint can be improved. However, the aging properties of Ni-modified MWCNTs composite solder joints have not been deeply studied. In this research, the mechanical, photoelectric and thermal reliability of SAC307 packaged flip-chip LEDs with Ni-MWCNTs added during aging were studied.

Design/methodology/approach

Compared with SAC solder alloys, the effects of different contents (0, 0.05, 0.1 and 0.2 Wt.%) of Ni-MWCNTs on the photoelectric and thermal properties of composite solder joints were examined. To study the aging characteristics of composite solder joints, the solder joints were aged at 85°C/85% relative humidity.

Findings

The addition of an appropriate amount of reinforcing agent Ni-MWCNTs reduces the density of the composite solder to 96% of the theoretical value of the SAC solder alloy. In addition, the microhardness increases and the wetting angle decreases. Two different phase compositions were observed in the solder joints with Ni-MWCNTs reinforcement: Cu3Sn and (Cu, Ni)6Sn5. The solder joints of SAC307-0.1Ni-MWCNTs exhibit the highest luminous flux and luminous efficiency of flip-chip LED filaments, the lowest steady-state voltage and junction temperature. And with the extension of the aging time, its aging stability is the best. In short, when the addition amount of Ni-MWCNTs is 0.1 Wt.%, the solder joints exhibit the best wettability and the thinnest intermetallic compound layer. And the shear strength of the tested solder joints is the best, and the void ratio is the lowest. At this time, the enhancement effect of Ni-MWCNTs on the composite solder has been best demonstrated.

Research limitations/implications

The content range of enhancer Ni-MWCNTs needs to be further reduced.

Practical implications

The authors have improved the performance of Ni-modified MWCNTs composite solder joints.

Originality/value

Composite solder with high performance has great practical application significance for improving the reliability and life of the whole device.

Details

Soldering & Surface Mount Technology, vol. 34 no. 5
Type: Research Article
ISSN: 0954-0911

Keywords

Article
Publication date: 9 November 2021

Xinmeng Zhai, Yue Chen and Yuefeng Li

The purpose of this paper is to develop a new composite solder to improve the reliability of composite solder joints. Nano-particles modified multi-walled carbon nanotubes…

Abstract

Purpose

The purpose of this paper is to develop a new composite solder to improve the reliability of composite solder joints. Nano-particles modified multi-walled carbon nanotubes (Ni-MWCNTs) can indeed improve the microstructure of composite solder joints and improve the reliability of solder joints. Although many people have conducted in-depth research on the composite solder of Ni-MWCNTs. However, no one has studied the performance of Ni-MWCNTs composite solder under different aging conditions. In this article, Ni-MWCNTs was added to Sn-Ag-Cu (SAC) solder, and the physical properties of composite solder, the microstructure and mechanical properties were evaluated.

Design/methodology/approach

In this study, the effect of different aging conditions on the intermetallic compound (IMC) layer growth and shear strength of Ni-modified MWCNTs reinforced SAC composite solder was studied. Compared with SAC307 solder alloy, the influence of Ni-MWCNTs with different contents (0, 0.1 and 0.2 Wt.%) on composite solder was examined. To study the aging characteristics of composite solder joints, the solder joints were aged at 80°C, 120°C and 150°C.

Findings

The experimental results show that the content of Ni-MWCNTs affects the morphology and growth of the IMC layer at the interface. The microhardness of the solder increases and the wetting angle decreases. After aging at moderate (120°C) and high temperature (150°C), the morphology of the Cu6Sn5 IMC layer changed from scallop to lamellar and the grain size became coarser. The following two different phase compositions were observed in the solder joints with Ni-MWCNTs reinforcement: Cu3Sn and (Cu, Ni)6Sn5. The fracture surface of the solder joints all appeared ductile dents, and the size of the pits increased significantly with the increase of the aging temperature. Through growth kinetic analysis, Ni-modified MWCNTs in composite solder joints can effectively inhibit the diffusion of atoms in solder joints. In short, when the addition amount of Ni-MWCNTs is 0.1 Wt.%, the solder joints exhibit the best wettability and the highest shear strength.

Originality/value

In this study, the effects of aging conditions on the growth and shear strength of the IMC layer of Ni modified MWCNTs reinforced SAC307 composite solder were studied. The effects of Ni MWCNTs with different contents (0, 0.1 and 0.2 Wt.%) on the composite solder were examined.

Details

Soldering & Surface Mount Technology, vol. 34 no. 3
Type: Research Article
ISSN: 0954-0911

Keywords

1 – 10 of 38