Search results

11 – 20 of 592
Article
Publication date: 1 October 1965

J.K. Dennis

This article concerns the use of an instrument which has proved to be a valuable tool in the search for decorative nickel/chromium coatings having greater corrosion resistance…

Abstract

This article concerns the use of an instrument which has proved to be a valuable tool in the search for decorative nickel/chromium coatings having greater corrosion resistance. Although the instrument is designed to measure stress in electrodeposits its inclusion in an article on corrosion behaviour can be justified since it enables one factor affecting this behaviour to be investigated in greater detail. While stress has some influence on the corrosion resistance of most electrodeposited coatings it has even greater significance in the case of chromium deposits. As is well known, three types of bright chromium are now being deposited for decorative purposes; conventional, crack‐free and micro‐cracked. Stress is a particularly important factor when investigating the thickness at which micro‐cracking occurs and the type of cracking that takes place.

Details

Anti-Corrosion Methods and Materials, vol. 12 no. 10
Type: Research Article
ISSN: 0003-5599

Article
Publication date: 1 June 2015

Jie Sun and Gang Wang

The purpose of this paper was to prepare the cerium-based conversion coating on AZ91D magnesium alloy, and its compositions, micro-morphology, corrosion resistance and the…

Abstract

Purpose

The purpose of this paper was to prepare the cerium-based conversion coating on AZ91D magnesium alloy, and its compositions, micro-morphology, corrosion resistance and the chemical valence state of the film elements were investigated.

Design/methodology/approach

The methodology comprised preparation of coatings at different temperatures, which then were characterized using scanning electron microscopy coupled with energy dispersive X-ray spectroscopy, an electrochemistry workstation and by means of X-ray photoelectron spectroscopy.

Findings

The conversion coating had a micro-cracked morphology. The conversion coatings were composed of MgO (or Mg-OH), CeO2 and Ce2O3. The best corrosion resistance of the cerium passivation film appeared when the treatment temperature was about 35°C.

Originality/value

The corrosion current densities of conversion coatings were lower by one to two orders of magnitude than the corrosion current density of the blank sample. The rare earth passivation coating prepared under the best condition could reduce the corrosion current to 3.548 × 10−6 A/cm2.

Details

Anti-Corrosion Methods and Materials, vol. 62 no. 4
Type: Research Article
ISSN: 0003-5599

Keywords

Open Access
Article
Publication date: 20 August 2024

Jianyong Liu, Xueke Luo, Long Li, Fangyuan Liu, Chuanyang Qiu, Xinghao Fan, Haoran Dong, Ruobing Li and Jiahao Liu

Utilizing electrical discharge machining (EDM) to process micro-holes in superalloys may lead to the formation of remelting layers and micro-cracks on the machined surface. This…

Abstract

Purpose

Utilizing electrical discharge machining (EDM) to process micro-holes in superalloys may lead to the formation of remelting layers and micro-cracks on the machined surface. This work proposes a method of composite processing of EDM and ultrasonic vibration drilling for machining precision micro-holes in complex positions of superalloys.

Design/methodology/approach

A six-axis computer numerical control (CNC) machine tool was developed, whose software control system adopted a real-time control architecture that integrates electrical discharge and ultrasonic vibration drilling. Among them, the CNC system software was developed based on Windows + RTX architecture, which could process the real-time processing state received by the hardware terminal and adjust the processing state. Based on the SoC (System on Chip) technology, an architecture for a pulse generator was developed. The circuit of the pulse generator was designed and implemented. Additionally, a composite mechanical system was engineered for both drilling and EDM. Two sets of control boards were designed for the hardware terminal. One set was the EDM discharge control board, which detected the discharge state and provided the pulse waveform for turning on the transistor. The other was a relay control card based on STM32, which could meet the switch between EDM and ultrasonic vibration, and used the Modbus protocol to communicate with the machining control software.

Findings

The mechanical structure of the designed composite machine tool can effectively avoid interference between the EDM spindle and the drilling spindle. The removal rate of the remelting layer on 1.5 mm single crystal superalloys after composite processing can reach over 90%. The average processing time per millimeter was 55 s, and the measured inner surface roughness of the hole was less than 1.6 µm, which realized the  micro-hole machining without remelting layer, heat affected zone and micro-cracks in the single crystal superalloy.

Originality/value

The test results proved that the key techniques developed in this paper were suite for micro-hole machining of special materials.

Details

Journal of Intelligent Manufacturing and Special Equipment, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2633-6596

Keywords

Content available
Article
Publication date: 1 August 2004

41

Abstract

Details

Soldering & Surface Mount Technology, vol. 16 no. 2
Type: Research Article
ISSN: 0954-0911

Keywords

Article
Publication date: 7 December 2015

Peter Horst

In general two main types of criteria are essential for the sizing of aircraft structural panels, namely, stability and damage tolerance. The way these criteria act and interact…

Abstract

Purpose

In general two main types of criteria are essential for the sizing of aircraft structural panels, namely, stability and damage tolerance. The way these criteria act and interact is very different for metallic and composite building blocks. While interaction of both types of criteria is relatively clear for composite parts, this is normally not the case for metallic ones. What is common for both is the fact that, if an interaction occurs, the impact is essential. The paper aims to discuss these issues.

Design/methodology/approach

This is a survey paper.

Findings

There is a strong mutual influence of buckling and damage in many cases.

Originality/value

It shows the significance of both, buckling and damage as a combined phenomenon.

Details

International Journal of Structural Integrity, vol. 6 no. 6
Type: Research Article
ISSN: 1757-9864

Keywords

Article
Publication date: 14 November 2016

Jiang Hu

The multi-scale numerical simulation method, able to represent the complexity of the random structures and capture phase degradation, is an effective way to investigate the…

Abstract

Purpose

The multi-scale numerical simulation method, able to represent the complexity of the random structures and capture phase degradation, is an effective way to investigate the long-term behavior of concrete in service and bridges the gap between research on the material and on the structural level. However, the combined chemical-physical deterioration mechanisms of concrete remain a challenging task. The purpose of this paper is to investigate the degradation mechanism of concrete at the waterline in cold regions induced by combined calcium leaching and frost damage.

Design/methodology/approach

With the help of the NIST’s three-dimensional (3D) hydration model and the random aggregate model, realistic 3D representative volume elements (RVEs) of concrete at the micro-, the meso-, and the macro-scales can be reconstructed. The boundary problem method is introduced to compute the homogenized mechanical properties for both sound and damaged RVEs. According to the damage characteristics, the staggering method including a random dissolution model and a thermo-mechanical coupling model is developed to simulate the synergy deterioration effects of interacted calcium leaching and frost attacks. The coupled damage procedure for the frost damage process is based on the hydraulic pressure theory and the ice lens growth theory considering the relationship between the frozen temperature and the radius of the capillary pore. Finally, regarding calcium leaching as the leading role in actual engineering, the numerical methodology for combined leaching and frost damage on concrete property is proposed using a successive multi-scale method.

Findings

On the basis of available experimental data, this methodology is employed to explore the deterioration process. The results agree with the experimental ones to some extent, chemical leaching leads to the nucleation of some micro-cracks (i.e. damage), and consequently, to the decrease of the frost resistance.

Originality/value

It is demonstrated that the multi-scale numerical methodology can capture potential aging and deterioration evolution processes, and can give an insight into the macroscopic property degradation of concrete under long-term aggressive conditions.

Details

Multidiscipline Modeling in Materials and Structures, vol. 12 no. 4
Type: Research Article
ISSN: 1573-6105

Keywords

Article
Publication date: 9 August 2019

Jiaxing Cai, Xuequn Cheng, Baijie Zhao, Linheng Chen, Yi Fan, Qinqin Dai, Hongchi Ma and Xiaogang Li

The purpose of this paper is to understand the process of failure of scale and the corrosion resistance of scale to the substrate in an atmospheric environment.

Abstract

Purpose

The purpose of this paper is to understand the process of failure of scale and the corrosion resistance of scale to the substrate in an atmospheric environment.

Design/methodology/approach

The corrosion behaviour of X65 pipeline steel with different types of oxide scale was analysed using the natural environment exposure corrosion test, scanning electron microscopy analysis, electrochemical corrosion polarization curve test and other methods in a warehouse environment.

Findings

The results of this research show that one type of oxide scale, which is rough, has an uneven microstructure, and exhibits weak adhesion to the matrix, does not protect the substrate from corrosion. Conversely, the uniform, dense oxide scale, which exhibits strong adhesion to the matrix, provides effective protection to the steel. However, as the corrosion develops, the corrosion rate of the substrate tends to accelerate, especially when the structure of the oxide scale is damaged to a certain extent.

Originality/value

The corrosion mechanism of the oxide scale on hot rolled steel in an atmospheric environment has been proposed.

Details

Anti-Corrosion Methods and Materials, vol. 66 no. 5
Type: Research Article
ISSN: 0003-5599

Keywords

Article
Publication date: 30 July 2019

Huang-Jan Hsu, Shyh-Yuan Lee, Cho-Pei Jiang and Richard Lin

This study aims to compare the marginal fit, flexural strength and hardness for a ceramic premolar that is constructed using dental computer aided machining (CAM) and…

Abstract

Purpose

This study aims to compare the marginal fit, flexural strength and hardness for a ceramic premolar that is constructed using dental computer aided machining (CAM) and three-dimensional slurry printing (3DSP).

Design/methodology/approach

Dental CAM and 3DSP are used to fabricate a premolar model. To reduce the fabrication time for 3DSP, a new composition of solvent-free slurry is proposed. Before it is fabricated, the dimensions of the green body for the premolar model are enlarged to account for the shrinkage ratio. A two-stage sintering process ensures accurate final dimensions for the premolar model. The surface morphology of the green body and the sintered premolars that are produced using the two methods is then determined using scanning electronic microscopy. The sintered premolars are seated on a stone model to determine the marginal gap using an optical microscope. The hardness and the flexural strength are also measured for the purpose of comparison.

Findings

The developed solvent-free slurry for 3DSP can be used to produce a premolar green body without micro-cracks or delamination. The maximal marginal gap for the sintered premolar parts that are constructed using the green bodies from dental CAM is 98.9 µm and that from 3DSP is 72 µm. Both methods produce a highly dense zirconia premolar using the same sintering conditions. The hardness value for the dental CAM group is 1238.8 HV, which is slightly higher than that for the 3DSP group (1189.4 HV) because there is a difference in the pre-processing of the initial ceramic materials. However, the flexural strength for 3DSP is 716.76 MPa, which is less than the requirement for clinical use.

Originality/value

This study verifies that 3DSP can be used to fabricate a zirconia dental restoration device that is as good as the one that is produced using the dental CAM system and which has a marginal gap that is smaller than the threshold value. The resulting premolar restoration devices that are produced by sintering the green bodies that are produced using 3DSP and dental CAM under the same conditions have a similar hardness value, which is four times greater than that of enamel. The flexural strength of 3DSP does not meet the requirement for clinical use.

Details

Rapid Prototyping Journal, vol. 25 no. 7
Type: Research Article
ISSN: 1355-2546

Keywords

Content available
Article
Publication date: 1 June 2005

63

Abstract

Details

Soldering & Surface Mount Technology, vol. 17 no. 2
Type: Research Article
ISSN: 0954-0911

Keywords

Article
Publication date: 6 November 2017

Guanhui Wang, Lin Xiao, Tiantian Nan, Jin Jia, Haiying Xiao and Dongxing Zhang

This study aimed to investigate the collective effects of bending load and hygrothermal aging on glass fibre-reinforced plastics (GFRP) due to the fact that stress and water…

Abstract

Purpose

This study aimed to investigate the collective effects of bending load and hygrothermal aging on glass fibre-reinforced plastics (GFRP) due to the fact that stress and water absorption is inevitable during GFRP applications.

Design/methodology/approach

The water boiling method was used to study the moisture absorption, desorption behaviour and evaluate the performance of GFRP laminates under loading in this article. The moisture diffusion of laminates is characterized in three aging conditions (25°C, 45°C and 65°C water), along with three levels of bending load coefficients (0, 0.3 and 0.6). The moisture diffusion coefficients are determined through the curve fitting method of the experimental data of the initial process, based on the Fickian diffusion model. Moreover, the laminates’ performance is further discussed after adequate environmental aging and loading.

Findings

It was found that moisture absorption is promoted by the presence of bending load and boiling during this study. The absorption diffusion coefficient and moisture equilibrium content of the specimens increased with an increasing loading ratio and temperature. The bending strength of the laminate varied according to a contrary trend. Furthermore, the desorbed moisture content is found to be much higher after higher levels of bending load because it is harder to desorb the moisture in the interfaces and micro cracks.

Research limitations/implications

Collective effects of bending load and hygrothermal aging promote the absorption and result in accelerating property degradation of GFRP. It is significant to focus on these effects on the failure of GFRP.

Originality/value

A novel unit was designed to simulate the various loading acted on containers in this work.

Details

Pigment & Resin Technology, vol. 46 no. 6
Type: Research Article
ISSN: 0369-9420

Keywords

11 – 20 of 592