Search results

1 – 10 of 293
To view the access options for this content please click here
Article

Qin Lian, Wenquan Sui, Xiangquan Wu, Fei Yang and Shaopeng Yang

This paper aims to develop an additive manufacturing technique for complex zirconia ceramic dental bridges.

Abstract

Purpose

This paper aims to develop an additive manufacturing technique for complex zirconia ceramic dental bridges.

Design/methodology/approach

To carry out this study, a dental bridge model was obtained by three-dimensional reverse engineering, and a light-curable zirconia ceramic suspension was formulated. Zirconia bridges were manufactured by stereolithography and then treated by vacuum freeze drying, vacuum infiltration and sintering. The optimal scanning speed was determined according to the shape precision comparison. Then, characteristics of the sintered ceramic parts were tested as size shrinkage, relative density, surface Vickers hardness, surface roughness and microstructure.

Findings

The method for preparation of light-curable zirconia suspension (40 volume per cent solid loading) with a viscosity value of 127 mPa·s was proposed. The optimal laser scanning speed for zirconia bridge fabrication was 1200 mm/s. A relative density of 98.58 per cent was achieved; the obtained surface Vickers hardness and surface roughness were 1,398 HV and 2.06 µm, respectively.

Originality/value

This paper provides a potential technical method for manufacturing complex zirconia dental bridges and other small complex-shaped ceramic components which are difficult to be made by other manufacturing techniques.

Details

Rapid Prototyping Journal, vol. 24 no. 1
Type: Research Article
ISSN: 1355-2546

Keywords

To view the access options for this content please click here
Article

J. Paulo Davim, Edgar Santos, Catarina Pereira and J.M.F. Ferreira

The paper aims to study the friction behaviour of alumina and zirconia against steel DIN‐Ck45K under water lubricated conditions.

Abstract

Purpose

The paper aims to study the friction behaviour of alumina and zirconia against steel DIN‐Ck45K under water lubricated conditions.

Design/methodology/approach

The tests were performed with a contact stress of 3.5 MPa and a constant sliding velocity of 0.5 m/s for 5.35 km of sliding distance, using a pin‐on‐disk tribometer.

Findings

The friction coefficient and the energy dissipated in the contact were considered in this comparative study. The zirconia ceramic present less friction coefficient and contact temperature than alumina ceramic. The zirconia present about 70 per cent of the energy dissipated against when compared with the alumina. Abrasive scars of the surface ploughing were observed on every wear track for two pairs in contact.

Research limitations/implications

This research used only one test condition.

Originality/value

The paper describes the tribological conditions used and a new methodology based on the energy dissipated in the contact is proposed.

Details

Industrial Lubrication and Tribology, vol. 60 no. 4
Type: Research Article
ISSN: 0036-8792

Keywords

To view the access options for this content please click here
Article

Ebrahim Yousefi, Morteza Adineh and Mohammad Bagher Askari

The purpose of this paper is to fabricate zirconia-nano alumina porous nanocomposites with different amount of alumina (0-30 Wt.%). Specimens were prepared by solid state…

Abstract

Purpose

The purpose of this paper is to fabricate zirconia-nano alumina porous nanocomposites with different amount of alumina (0-30 Wt.%). Specimens were prepared by solid state sintering method at different temperature (1,400-1,700°C).

Design/methodology/approach

Effects of processing temperature and amount of alumina on microstructure, distribution of nanoparticles, flexural and compressive strengths, micro-hardness and densification were investigated.

Findings

Results indicated that interpenetration of particles and their contacts increased by increasing sintering temperature. As a consequence of better particles contacts and microstructure coarsening, the porosity decreased. As alumina nanoparticles content increased, the amount of porosity decreased conversely and distribution of pores become more uniform. Simultaneous enhancement of temperature and alumina nanoparticles content caused an improvement of flexural and compressive strengths because of an improvement of sintering process resulted from porosity reduction. Increase in hardness and density were observed as porosity values diminished and alumina nanoparticles were distributed well at micro zirconia grain boundaries as a result of increasing the process temperature.

Originality/value

This article contains original research.

Details

Anti-Corrosion Methods and Materials, vol. 65 no. 2
Type: Research Article
ISSN: 0003-5599

Keywords

To view the access options for this content please click here
Article

Jan Wilkes, Yves‐Christian Hagedorn, Wilhelm Meiners and Konrad Wissenbach

The purpose this paper is to develop an additive manufacturing (AM) technique for high‐strength oxide ceramics. The process development aims at directly manufacturing…

Abstract

Purpose

The purpose this paper is to develop an additive manufacturing (AM) technique for high‐strength oxide ceramics. The process development aims at directly manufacturing fully dense ceramic freeform‐components with good mechanical properties.

Design/methodology/approach

The selective laser melting of the ceramic materials zirconia and alumina has been investigated experimentally. The approach followed up is to completely melt ZrO2/Al2O3 powder mixtures by a focused laser beam. In order to reduce thermally induced stresses, the ceramic is preheated to a temperature of at least 1,600°C during the build up process.

Findings

It is possible to manufacture ceramic objects with almost 100 percent density, without any sintering processes or any post‐processing. Crack‐free specimens have been manufactured that have a flexural strength of more than 500 MPa. Manufactured objects have a fine‐grained two‐phase microstructure consisting of tetragonal zirconia and alpha‐alumina.

Research limitations/implications

Future research may focus on improving the surface quality of manufactured components, solving issues related to the cold powder deposition on the preheated ceramic, further increasing the mechanical strength and transferring the technology from laboratory scale to industrial application.

Practical implications

Potential applications of this technique include manufacturing individual all‐ceramic dental restorations, ceramic prototypes and complex‐shaped ceramic components that cannot be made by any other manufacturing technique.

Originality/value

This new manufacturing technique based on melting and solidification of high‐performance ceramic material has some significant advantages compared to laser sintering techniques or other manufacturing techniques relying on solid‐state sintering processes.

To view the access options for this content please click here
Article

Huang-Jan Hsu, Shyh-Yuan Lee, Cho-Pei Jiang and Richard Lin

This study aims to compare the marginal fit, flexural strength and hardness for a ceramic premolar that is constructed using dental computer aided machining (CAM) and…

Abstract

Purpose

This study aims to compare the marginal fit, flexural strength and hardness for a ceramic premolar that is constructed using dental computer aided machining (CAM) and three-dimensional slurry printing (3DSP).

Design/methodology/approach

Dental CAM and 3DSP are used to fabricate a premolar model. To reduce the fabrication time for 3DSP, a new composition of solvent-free slurry is proposed. Before it is fabricated, the dimensions of the green body for the premolar model are enlarged to account for the shrinkage ratio. A two-stage sintering process ensures accurate final dimensions for the premolar model. The surface morphology of the green body and the sintered premolars that are produced using the two methods is then determined using scanning electronic microscopy. The sintered premolars are seated on a stone model to determine the marginal gap using an optical microscope. The hardness and the flexural strength are also measured for the purpose of comparison.

Findings

The developed solvent-free slurry for 3DSP can be used to produce a premolar green body without micro-cracks or delamination. The maximal marginal gap for the sintered premolar parts that are constructed using the green bodies from dental CAM is 98.9 µm and that from 3DSP is 72 µm. Both methods produce a highly dense zirconia premolar using the same sintering conditions. The hardness value for the dental CAM group is 1238.8 HV, which is slightly higher than that for the 3DSP group (1189.4 HV) because there is a difference in the pre-processing of the initial ceramic materials. However, the flexural strength for 3DSP is 716.76 MPa, which is less than the requirement for clinical use.

Originality/value

This study verifies that 3DSP can be used to fabricate a zirconia dental restoration device that is as good as the one that is produced using the dental CAM system and which has a marginal gap that is smaller than the threshold value. The resulting premolar restoration devices that are produced by sintering the green bodies that are produced using 3DSP and dental CAM under the same conditions have a similar hardness value, which is four times greater than that of enamel. The flexural strength of 3DSP does not meet the requirement for clinical use.

Details

Rapid Prototyping Journal, vol. 25 no. 7
Type: Research Article
ISSN: 1355-2546

Keywords

To view the access options for this content please click here
Article

Darko Belavic, Marko Hrovat, Marina Santo Zarnik, Andreja Bencan, Walter Smetana, Roland Reicher and Heinz Homolka

Strain gauges can be realised by printing and firing thick‐film resistors on ceramic substrates that are usually based on alumina. However, sensing elements made on some…

Abstract

Strain gauges can be realised by printing and firing thick‐film resistors on ceramic substrates that are usually based on alumina. However, sensing elements made on some other substrates – tetragonal zirconia or stainless steel – would exhibit some improved characteristics, either due to a lower modulus of elasticity or a higher mechanical strength. As thick‐film resistors are developed for firing on alumina substrates their compatibility and possible interactions with other kinds of substrates have to be evaluated. The sheet resistivities and noise indices of the resistors were comparable, whereas the gauge factors were lower for the dielectric‐on‐steel substrates. The temperature coefficients of resistivity (TCR) of the resistors on the ZrO2 and dielectric‐on‐steel substrates were higher than the TCRs on the alumina substrates, which was attributed to the higher thermal expansion coefficient of the tetragonal zirconia and the stainless steel.

Details

Microelectronics International, vol. 20 no. 2
Type: Research Article
ISSN: 1356-5362

Keywords

To view the access options for this content please click here
Article

Kyungmok Kim, Jean Geringer and Bernard Forest

The purpose of this paper is to describe finite element modelling for fracture and fatigue behaviour of zirconia toughened alumina microstructures.

Abstract

Purpose

The purpose of this paper is to describe finite element modelling for fracture and fatigue behaviour of zirconia toughened alumina microstructures.

Design/methodology/approach

A two‐dimensional finite element model is developed with an actual Al2O3‐10 vol% ZrO2 microstructure. A bilinear, time‐independent cohesive zone law is implemented for describing fracture behaviour of grain boundaries. Simulation conditions are similar to those found at contact between a head and a cup of hip prosthesis. Residual stresses arisen from the mismatch of thermal coefficient between grains are determined. Then, effects of a micro‐void and contact stress magnitude are investigated with models containing residual stresses. For the purpose of simulating fatigue behaviour, cyclic loadings are applied to the models.

Findings

Results show that crack density is gradually increased with increasing magnitude of contact stress or number of fatigue cycles. It is also identified that a micro‐void brings about the increase of crack density rate.

Social implications

This paper is the first step for predicting the lifetime of ceramic implants. The social implications would appear in the next few years about health issues.

Originality/value

This proposed finite element method allows describing fracture and fatigue behaviours of alumina‐zirconia microstructures for hip prosthesis, provided that a microstructure image is available.

To view the access options for this content please click here
Article

Igor Danilenko, Serhii Prokhorenko, Tetyana Konstantinova, Leonid Ahkozov, Valerii Burkhovetski and Valentina Glazunova

The use of ceramic instead of metallic parts in devices that operate in aggressive conditions increases the service life of machines and equipment for chemical…

Abstract

The use of ceramic instead of metallic parts in devices that operate in aggressive conditions increases the service life of machines and equipment for chemical, metallurgical and other industries. The wear resistant zirconia/alumina composites were sintered from nanopowders obtained by co-precipitation technique. In the case of addition of 1wt% of alumina in zirconia ceramics the wear resistance increased by approximately 30%.

The formation of complex multilevel composite structures, such as Al3+ ion segregation on zirconia grain boundaries and intracrystalline alumina inclusions in zirconia grains, increased the fracture toughness values of composites obtained from co-precipitated nanopowders and consequently decreased the volume loss of ceramic material.

In this study, we investigated the effect of nanopowders synthesis methods and alumina concentration on composite structure, fracture toughness and tribological behavior of 3Y-TZP/alumina ceramic composites and searched correlation between structures and mechanical properties.

Details

World Journal of Engineering, vol. 11 no. 1
Type: Research Article
ISSN: 1708-5284

Keywords

To view the access options for this content please click here
Article

Koji Nakane, Kosuke Mizutani, Ruonan Zhang, Kenta Sugimoto and Nobuo Ogata

A sol-gel process has been successfully utilized to form hybrid materials of poly(vinyl butyral) (PVB) and zirconium dioxide (zirconia). The gelation occurred due to the…

Abstract

A sol-gel process has been successfully utilized to form hybrid materials of poly(vinyl butyral) (PVB) and zirconium dioxide (zirconia). The gelation occurred due to the interaction between remaining hydroxyl group of PVB and zirconia. The hybrids showed good optical transparency and significant improvement in Young's modulus, dynamic mechanical property, abrasion resistance and impact resistance. The glass transition temperature of PVB shifted to higher temperatures by hybridization of PVB and zirconia.

Details

World Journal of Engineering, vol. 9 no. 3
Type: Research Article
ISSN: 1708-5284

Keywords

To view the access options for this content please click here
Article

R. Dell'Acqua

Thick‐film technology to implement passive elements, network and hybrid circuits has been widely used for four decades and its importance is still growing. While on one…

Abstract

Thick‐film technology to implement passive elements, network and hybrid circuits has been widely used for four decades and its importance is still growing. While on one hand the technology has been improved to meet the requirements for more sophisticated circuits, on the other hand a better knowledge of its outstanding properties has promoted its application to a certain number of sometimes exotic devices, many of which are in the sensor and actuator area. This paper presents examples of a variety of applications to illustrate what thick film technology can offer outside the familiar area, and to stimulate the imagination of scientists towards possible new applications.

Details

Microelectronics International, vol. 4 no. 1
Type: Research Article
ISSN: 1356-5362

1 – 10 of 293