Search results

1 – 10 of over 4000
Content available
Article
Publication date: 1 February 2004

38

Abstract

Details

Pigment & Resin Technology, vol. 33 no. 1
Type: Research Article
ISSN: 0369-9420

Keywords

Article
Publication date: 25 September 2023

Jiaxin Li, Zhiyuan Zhu, Zhiwei Li, Yonggang Zhao, Yun Lei, Xuping Su, Changjun Wu and Haoping Peng

Gallic acid is a substance that is widely found in nature. Initially, it was only used as a corrosion inhibitor to retard the rate of corrosion of metals. In recent years, with…

Abstract

Purpose

Gallic acid is a substance that is widely found in nature. Initially, it was only used as a corrosion inhibitor to retard the rate of corrosion of metals. In recent years, with intensive research by scholars, the modification of coatings containing gallic acid has become a hot topic in the field of metal protection. This study aims to summarize the various preparation methods of gallic acid and its research progress in corrosion inhibitors and coatings, as well as related studies using quantum chemical methods to assess the predicted corrosion inhibition effects and to systematically describe the prospects and current status of gallic acid applications in the field of metal corrosion inhibition and protection.

Design/methodology/approach

First, the various methods of preparation of gallic acid in industry are understood. Second, the corrosion inhibition principles and research progress of gallic acid as a metal corrosion inhibitor are presented. Then, the corrosion inhibition principles and research progress of gallic acid involved in the synthesis and modification of various rust conversion coatings, nano-coatings and organic resin coatings are described. After that, studies related to the evaluation and prediction of gallic acid corrosion inhibition on metals by quantum chemical methods are presented. Finally, new research ideas on gallic acid in the field of corrosion inhibition and protection of metals are summarized.

Findings

Gallic acid can be used as a corrosion inhibitor or coating in metal protection.

Research limitations/implications

There is a lack of research on the synergistic improvement of gallic acid and other substances.

Practical implications

The specific application of gallic acid in the field of metal protection was summarized, and the future research focus was put forward.

Originality/value

To the best of the authors’ knowledge, this paper systematically expounds on the research progress of gallic acid in the field of metal protection for the first time and provides new ideas and directions for future research.

Details

Anti-Corrosion Methods and Materials, vol. 70 no. 6
Type: Research Article
ISSN: 0003-5599

Keywords

Article
Publication date: 18 February 2019

Fen Peng, Wensheng Liu, Yufeng Huang, Siwei Tang, Chaoping Liang and Yunzhu Ma

The purpose of this study is to develop a monolayer surface coating of stearic acid on Sn-Ag-Cu solder powder to limit oxidation.

Abstract

Purpose

The purpose of this study is to develop a monolayer surface coating of stearic acid on Sn-Ag-Cu solder powder to limit oxidation.

Design/methodology/approach

Stearic acid was adsorbed onto Sn-Ag-Cu solder powder through liquid-phase adsorption. The isotherm of adsorption was measured and then the microstructure of coated powder was characterized by scanning electron microscopy, transmission electron microscopy, X-ray photoelectron spectroscopy and Fourier-transform infrared spectroscopy.

Findings

The adsorption isotherm of stearic acid on the powder was “H” type, which revealed the layer-by-layer adsorption on non-porous surface. When the concentration of solution was in the range of 0.001-0.006 mol/L, with an adsorption amount of 0.12 ± 0.1 mg/g, monolayer stearic acid covered the solder powder completely. Uniform and integrated self-assembled monolayer coating was formed through hydrogen bonds between the oxygen ions in surface lattice of Sn3.0Ag0.5Cu solder powder and the —O—H hydroxyl group of stearic acid. The maximum angle of stability of coated powder also reduced by 2.87° compared with that of non-coated powder. The increase rate of oxygen content of coated powder was much slower than that of non-coated powder when they were exposed to humid air.

Originality/value

As a result, oxidation of fine solder powder was effectively limited. Essentially, this method can also be applied to the coating of other types of solder powder and has reference significance to other coating by liquid-phase method.

Details

Soldering & Surface Mount Technology, vol. 31 no. 1
Type: Research Article
ISSN: 0954-0911

Keywords

Article
Publication date: 5 March 2018

Sandip D. Rajput, Chandrashekhar K. Patil and Vikas V. Gite

The present study aims to demonstrate the use of renewable source in the preparation of polyurethane (PU) coatings and mitigation of corrosion of mild steel using nano zinc…

151

Abstract

Purpose

The present study aims to demonstrate the use of renewable source in the preparation of polyurethane (PU) coatings and mitigation of corrosion of mild steel using nano zinc phosphate. Results indicated improvement in the properties of the PU coatings, especially anticorrosive properties by the addition of nano zinc phosphate.

Design/methodology/approach

Renewable-source-based polyestermyristamide polyol was synthesized using myristic acid as a starting material. The synthesis of polyol was carried by amidation as well as by esterification by a one-pot route. The structure of the prepared polyestermyristamide was confirmed with the support of end-group analysis and spectral study. PU coatings were prepared from synthesized polyestermyristamide polyol and used to protect metal substrate against corrosion. Corrosion properties of the prepared PU were found to be lower; hence, to improve the performance of these coatings, nano zinc phosphate was added to the coatings. The nano zinc phosphate was synthesized in the laboratory by reported sonication method and analyzed for morphology by scanning electron microscopy. Performance of coatings was studied with respect to effect of percentage nano zinc phosphate on thermal stability, mechanical properties and chemical resistances of PU coatings.

Findings

The combination of zinc phosphate nano rods and particles in myristic acid-based PU coatings provided substantial corrosion barrier properties to the coatings. Different per cent of the synthesized zinc phosphate nano rods and particles were loaded into the matrix, and corresponding coatings were estimated for corrosion resistance, thermal and chemical properties. Immersion study of the coated panels in 3.5 per cent NaCl solution showed good corrosion resistance for both PU coatings containing 2 and 3 per cent nano zinc phosphate.

Practical implications

This paper has provided the solution to replace existing petroleum-based raw materials with myristic acid as a renewable source in preparing PU coatings. Conventional coatings act as physical barriers against aggressive species but do not have ability to perform as permanent impassable to corrosive species. Hence, nano-sized zinc phosphate is used as corrosion inhibitor in to the synthesized PU coatings for enhancing anticorrosive performance.

Originality/value

In the paper, polyesteramide polyol is synthesized using renewable-source-based material, i.e. myristic acid to replace existing petroleum-based acid as a greener approach. Normally, vegetable oils are preferred as they have such kinds of polyols. The polyesteramide reaction is one pot that avoids the extra steps required in the synthesis. Further, it has been found that the pristine renewable coatings are unable to fully protect subtract from corrosion, whereas an addition of the nano-size zinc phosphate has enhanced the corrosion properties of the coatings.

Details

Pigment & Resin Technology, vol. 47 no. 2
Type: Research Article
ISSN: 0369-9420

Keywords

Article
Publication date: 2 November 2012

Xing Juan Chen, Cheng Luo, Zheng Han Zhang and Min Zhao

The purpose of this investigation was to synthesize a doped polyaniline‐containing coating and investigate the anti‐corrosion properties of the coating on Mg‐Li alloy.

Abstract

Purpose

The purpose of this investigation was to synthesize a doped polyaniline‐containing coating and investigate the anti‐corrosion properties of the coating on Mg‐Li alloy.

Design/methodology/approach

The doped polyaniline pigments were prepared by two different methods using ammonium persulphate as oxidant and hydrochloric acid, phosphoric acid, p‐toluene sulfonic acid and sulfosalicylic acid as doping agents. The doped polyaniline was characterized by Fourier transform infrared (FT‐IR) analysis, X‐ray diffraction (XRD) and scanning electron microscopy (SEM). The coatings consisted of polyaniline, epoxy resin and other additives that were formed on Mg‐Li alloy. The anti‐corrosion properties of the polyaniline‐containing coating on the Mg‐Li alloy were investigated in 3.5 wt.% NaCl solution using open circuit potential logging and electrochemical impedance spectroscopy.

Findings

The results of the electrochemical tests indicated that the polyaniline‐containing coatings showed better anti‐corrosion properties, as compared to conventional epoxy coatings on Mg‐Li alloy when exposed in 3.5 wt.% NaCl solution. The coating containing 2 wt.% polyaniline (relative to the mass of epoxy resin) doped with hydrochloric acid had the best anti‐corrosion properties on the Mg‐Li alloy.

Originality/value

Previous reports on the anti‐corrosion properties of polyaniline‐containing coatings focused mainly on the surface of iron, steel, aluminum and magnesium, and there have been few studies on the anti‐corrosion properties as protective coatings for Mg‐Li alloy.

Article
Publication date: 7 September 2015

X. Jiang, L. Lin, X. Bai, S. Wang and C. Wang

The purpose of this paper is to investigate the effects of carbon nanotubes (CNTs) on the mechanical, thermal and colour properties of solvent-containing two-component…

Abstract

Purpose

The purpose of this paper is to investigate the effects of carbon nanotubes (CNTs) on the mechanical, thermal and colour properties of solvent-containing two-component polyurethane (PU) coating.

Design/methodology/approach

Fourier transform infrared spectroscopy and observation of dispersion stability were used to assess the effects of acid treatment on CNTs. The CNTs and PU composite coating was synthesised by in situ polymerisation and bending polymerisation, and the mechanical, thermal and colour appearance properties of coating were characterised.

Findings

It was found that desirable modifications to CNTs occurred after acid treatment; thus, mainly carboxylic acid groups were introduced onto the surface of CNTs. And the acid-treated CNTs could improve the mechanical and thermal properties of PU coating, and the properties of composite coating was improved more successfully by in situ polymerisation than by blending polymerisation.

Practical implications

The investigation established a method to synthesise CNTs and PU composite coating. The mechanical and thermal properties of PU coating could be improved by the inclusion of CNTs.

Originality/value

This study established a method to synthesise CNTs and PU composite coating by in situ polymerisation and blending polymerisation; the effects of CNTs on modifying mechanical, thermal and colour properties of PU coating were investigated and compared in detail.

Details

Pigment & Resin Technology, vol. 44 no. 5
Type: Research Article
ISSN: 0369-9420

Keywords

Article
Publication date: 19 September 2019

Ashraf El-Bindary, Hala Kiwaan, Abdel Ghany Shoair, Fawzia El-Ablack and Ahmed Eessa

The purpose of this paper is to introduce a new method for modification of alkyd resin by using 3-triethoxysilylpropyl succinic acid anhydride (TESP-SA) as the core material for…

Abstract

Purpose

The purpose of this paper is to introduce a new method for modification of alkyd resin by using 3-triethoxysilylpropyl succinic acid anhydride (TESP-SA) as the core material for low volatile organic components (VOCs) polyurethane coating applications.

Design/methodology/approach

The structural, physical, thermal and film properties of the silane-modified (SM) alkyd were evaluated and compared with those of a silane-free alkyd resin that was prepared by a single-step method. The synthesis reaction was described in a detailed scheme and evidenced by ATR-FTIR measurements and 13C-NMR spectroscopy.

Findings

SM alkyd has synthesized with high solid content (85%) and low viscosity (5700 cP). As a result, environmentally friendly coatings with lower (VOC) emission are possible by using this type of alkyd polymer. The results showed that the presence of the Si atom in the final structure improved the thermal stability against the higher levels of aromatic rings in the silane-free alkyd. It was found that coatings based on SM alkyd have lower values of yellowing factor (Δa) and an increase of gloss retention percentage at different intervals of exposure to the quick ultraviolet weathering conditions.

Practical implications

The synthesized SM alkyd resin provided a practical solution to obtain environmentally friendly coatings with low VOC content, in addition to its improvement in alkyds’ overall characteristics, while still using natural resources – fatty acids – instead of totally petroleum resources.

Originality/value

TESP-SA has not been used before in alkyd polymer modifications, and this study can help countries that are interested in using environmentally-friendly coatings.

Details

Pigment & Resin Technology, vol. 49 no. 2
Type: Research Article
ISSN: 0369-9420

Keywords

Article
Publication date: 6 July 2010

S. Awasthi and D. Agarwal

The purpose of this paper is to describe how to synthesise polyurethane resins by using different polyester polyols and HDI isocyanurate. The polyester polyols were prepared by…

1099

Abstract

Purpose

The purpose of this paper is to describe how to synthesise polyurethane resins by using different polyester polyols and HDI isocyanurate. The polyester polyols were prepared by reacting single diol with different diacids. The effects of these polyester polyols on the performance properties of the coating films are studied.

Design/methodology/approach

A series of hydroxyl‐terminated polyester polyols were synthesised by using 1,4‐cyclohexanedimethanol (1,4‐CHDM) with different diacids such as 1,3‐cyclohexanedicarboxylic acid (1,3‐CHDA), 1,4‐CHDA, adipic acid (AA), azelaic acid (AZA), and isophthalic acid (IPA). The general properties including acid number, hydroxyl number average molecular weight, polydispersity index, and viscosity of these polyester polyols were evaluated. Different coating formulations were developed by using polyester polyols and HDI isocyanurate. These coatings were applied on sand blasted mild steel panels and glass panels and were cured in hot air oven. Various mechanical, thermal and chemical resistance properties of the coating films were evaluated.

Findings

The paper shows that, the polyurethane coatings have good resistance to water and other chemicals and can be used safely in exterior applications. In polyester polyols for polyurethane coating, CHDA showed a good balance in mechanical properties, which may be attributed to its unique cycloaliphatic structure and 1,4‐substitution. The polyester polyol based on aromatic diacids provided polyurethane coatings with maximum hardness and high Tg.

Research limitations/implications

The polyurethane resins were prepared from polyester polyol (made up of cyclohexanedimethanol (CHDM) and CHDA, IPA, AA, and AZA). Besides, this, it can be synthesised from some other polyester polyols (having different acids and alcohols) or polyether polyols. In addition to this, some other isocyanates such as TDI, MDI, HMDI, etc. can also be used.

Practical implications

The paper has provided a better solution for developing high solid polyurethane coatings for exterior applications due to presence of cycloaliphatic compounds.

Originality/value

In this paper, cyclohexyl dibasic acids have been used as the replacement for the aromatic dibasic acids. In aromatic dibasic acids, the phenyl ring readily absorbs UV‐light limiting the photo‐oxidative stability of the polyesters. So, these studies will help to develop high‐solid polyurethane coatings which could find numerous industrial applications in surface coatings.

Details

Pigment & Resin Technology, vol. 39 no. 4
Type: Research Article
ISSN: 0369-9420

Keywords

Article
Publication date: 24 January 2024

Dexin Chen, Hongyuan He, Zhixin Kang and Wei Li

This study aims to review the current one-step electrodeposition of superhydrophobic coatings on metal surfaces.

Abstract

Purpose

This study aims to review the current one-step electrodeposition of superhydrophobic coatings on metal surfaces.

Design/methodology/approach

One-step electrodeposition is a versatile and simple technology to prepare superhydrophobic coatings on metal surfaces.

Findings

Preparing superhydrophobic coatings by one-step electrodeposition is an efficient method to protect metal surfaces.

Originality/value

Even though there are several technologies, one-step electrodeposition still plays a significant role in producing superhydrophobic coatings.

Details

Anti-Corrosion Methods and Materials, vol. 71 no. 2
Type: Research Article
ISSN: 0003-5599

Keywords

Article
Publication date: 25 July 2019

Tianji Xing, Lixia Ying, Chunxi Wu, Zhen Fu and Guixiang Wang

The purpose of this paper is to improve binding force between the coating and the steel substrate by using chemical modification on the steel surface; at the same time, it can…

Abstract

Purpose

The purpose of this paper is to improve binding force between the coating and the steel substrate by using chemical modification on the steel surface; at the same time, it can also increase the corrosion resistance of the coating.

Design/methodology/approach

The main components of the conversion film include tannic acid, sodium molybdate and silane coupling agent KH560. After the preparation was completed, the samples were tested and analyzed, including surface morphology, conversion film components, bonding force with organic resins and corrosion resistance. Finally, it drew a conclusion that the conversion film can greatly improve the bonding strength of the steel substrate and epoxy resin.

Findings

When the content of tannic acid is 4 g/L meanwhile the content of KH560 is 20 g/L, the conversion film has the strongest binding force with epoxy resin, from 2.15 Mpa of untreated steel to 4.60 Mpa, growth of 140 per cent. At the same time, the resulting conversion film also improves the corrosion resistance of the steel surface by a small margin.

Originality/value

A method of enhancing the bond between an epoxy coating and steel is provided. Verify the mechanism of this method.

Details

Anti-Corrosion Methods and Materials, vol. 66 no. 4
Type: Research Article
ISSN: 0003-5599

Keywords

1 – 10 of over 4000