Search results

1 – 10 of 26
Open Access
Article
Publication date: 2 January 2024

Guillermo Guerrero-Vacas, Jaime Gómez-Castillo and Oscar Rodríguez-Alabanda

Polyurethane (PUR) foam parts are traditionally manufactured using metallic molds, an unsuitable approach for prototyping purposes. Thus, rapid tooling of disposable molds using…

1146

Abstract

Purpose

Polyurethane (PUR) foam parts are traditionally manufactured using metallic molds, an unsuitable approach for prototyping purposes. Thus, rapid tooling of disposable molds using fused filament fabrication (FFF) with polylactic acid (PLA) and glycol-modified polyethylene terephthalate (PETG) is proposed as an economical, simpler and faster solution compared to traditional metallic molds or three-dimensional (3D) printing with other difficult-to-print thermoplastics, which are prone to shrinkage and delamination (acrylonitrile butadiene styrene, polypropilene-PP) or high-cost due to both material and printing equipment expenses (PEEK, polyamides or polycarbonate-PC). The purpose of this study has been to evaluate the ease of release of PUR foam on these materials in combination with release agents to facilitate the mulding/demoulding process.

Design/methodology/approach

PETG, PLA and hardenable polylactic acid (PLA 3D870) have been evaluated as mold materials in combination with aqueous and solvent-based release agents within a full design of experiments by three consecutive molding/demolding cycles.

Findings

PLA 3D870 has shown the best demoldability. A mold expressly designed to manufacture a foam cushion has been printed and the prototyping has been successfully achieved. The demolding of the part has been easier using a solvent-based release agent, meanwhile the quality has been better when using a water-based one.

Originality/value

The combination of PLA 3D870 and FFF, along with solvent-free water-based release agents, presents a compelling low-cost and eco-friendly alternative to traditional metallic molds and other 3D printing thermoplastics. This innovative approach serves as a viable option for rapid tooling in PUR foam molding.

Details

Rapid Prototyping Journal, vol. 30 no. 11
Type: Research Article
ISSN: 1355-2546

Keywords

Open Access
Article
Publication date: 20 August 2024

Miguel Araya-Calvo, Antti Järvenpää, Timo Rautio, Johan Enrique Morales-Sanchez and Teodolito Guillen-Girón

This study compares the fatigue performance and biocompatibility of as-built and chemically etched Ti-6Al-4V alloys in TPMS-gyroid and stochastic structures fabricated via Powder…

Abstract

Purpose

This study compares the fatigue performance and biocompatibility of as-built and chemically etched Ti-6Al-4V alloys in TPMS-gyroid and stochastic structures fabricated via Powder Bed Fusion Laser Beam (PBF-LB). This study aims to understand how complex lattice structures and post-manufacturing treatment, particularly chemical etching, affect the mechanical properties, surface morphology, fatigue resistance and biocompatibility of these metamaterials for biomedical applications.

Design/methodology/approach

Selective Laser Melting (SLM) technology was used to fabricate TPMS-gyroid and Voronoi stochastic designs with three different relative densities (0.2, 0.3 and 0.4) in Ti-6Al-4V ELI alloy. The as-built samples underwent a chemical etching process to enhance surface quality. Mechanical characterization included static compression and dynamic fatigue testing, complemented by scanning electron microscopy (SEM) for surface and failure analysis. The biocompatibility of the samples was assessed through in-vitro cell viability assays using the Alamar Blue assay and cell proliferation studies.

Findings

Chemical etching significantly improves the surface morphology, mechanical properties and fatigue resistance of both TPMS-gyroid and stochastic structures. Gyroid structures demonstrated superior mechanical performance and fatigue resistance compared to stochastic structures, with etching providing more pronounced benefits in these aspects. In-vitro biocompatibility tests showed high cytocompatibility for both as-built and etched samples, with etched samples exhibiting notably improved cell viability. The study also highlights the importance of design and post-processing in optimizing the performance of Ti64 components for biomedical applications.

Originality/value

The comparative analysis between as-built and etched conditions, alongside considering different lattice designs, provides valuable information for developing advanced biomedical implants. The demonstration of enhanced fatigue resistance and biocompatibility through etching adds significant value to the field of additive manufacturing, suggesting new avenues for designing and post-processing implantable devices.

Details

Rapid Prototyping Journal, vol. 30 no. 11
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 14 July 2023

Shashi Prakash Dwivedi

The quantum of metal particle waste generation in manufacturing industries is posing a great concern for the environment. The iron forging industries generate a huge amount of…

Abstract

Purpose

The quantum of metal particle waste generation in manufacturing industries is posing a great concern for the environment. The iron forging industries generate a huge amount of grinding sludge (GS) waste, which is disposed into the earth. The accumulation of this waste in dump yards causes an increase in soil and air pollution levels.

Design/methodology/approach

In the current investigation, an effort was made to use this waste GS for the progress of aluminum-based composite. To maintain uniform distribution of reinforcing material, the friction stir processing technique was used.

Findings

The characterization based on the SEM image of the Al/GS composite revealed that uniform dispersal of reinforcement content can be attained in a single tool pass. Number of grains/inch was approximately 2,402. XRD of GS powder confirmed the presence of SiO2, Fe2O3, Al2O3 and CaO phases. These phases proved GS to be a better reinforcement with aluminum alloy. Tensile strength and hardness were significantly improved in comparison to the aluminum alloy. Thermal expansion and corrosion weight loss were evaluated to observe the influence of GS addition.

Originality/value

The studies proved that the use of GS as reinforcement material can help in curbing the menace of soil pollution to a large extent.

Details

World Journal of Engineering, vol. 21 no. 5
Type: Research Article
ISSN: 1708-5284

Keywords

Open Access
Article
Publication date: 4 June 2024

Ludovico Martignoni, Andrea Vegro, Sara Candidori, Mohammad Qasim Shaikh, Sundar V. Atre, Serena Graziosi and Riccardo Casati

This study aims to deepen the knowledge concerning the metal fused filament fabrication technology through an analysis of the printing parameters of a commercial 316L stainless…

Abstract

Purpose

This study aims to deepen the knowledge concerning the metal fused filament fabrication technology through an analysis of the printing parameters of a commercial 316L stainless steel filament and their influence on the porosity and mechanical properties of the printed parts. It also investigates the feasibility of manufacturing complex geometries, including strut-and-node and triply periodic minimal surface lattices.

Design/methodology/approach

A three-step experimental campaign was carried out. Firstly, the printing parameters were evaluated by analysing the green parts: porosity and density measurements were used to define the best printing profile. Then, the microstructure and porosity of the sintered parts were investigated using light optical and scanning electron microscopy, while their mechanical properties were obtained through tensile tests. Finally, manufacturability limits were explored with reference samples and cellular structures having different topologies.

Findings

The choice of printing parameters drastically influences the porosity of green parts. A printing profile which enables reaching a relative density above 99% has been identified. However, voids characterise the sintered components in parallel planes at the interfaces between layers, which inevitably affect their mechanical properties. Lattice structures and complex geometries can be effectively printed, debinded, and sintered if properly dimensioned to fulfil printing constraints.

Originality/value

This study provides an extensive analysis of the printing parameters for the 316L filament used and an in-depth investigation of the potential of the metal fused filament fabrication technology in printing lightweight structures.

Article
Publication date: 12 September 2024

Tunay Turk, Cesar E. Dominguez, Austin T. Sutton, John D. Bernardin, Jonghyun Park and Ming C. Leu

This paper aims to present spot pattern welding (SPW) as a scanning strategy for laser-foil-printing (LFP) additive manufacturing (AM) in place of the previously used continuous…

Abstract

Purpose

This paper aims to present spot pattern welding (SPW) as a scanning strategy for laser-foil-printing (LFP) additive manufacturing (AM) in place of the previously used continuous pattern welding (CPW) (line-raster scanning). The SPW strategy involves generating a sequence of overlapping spot welds on the metal foil, allowing the laser to form dense and uniform weld beads. This in turn reduces thermal gradients, promotes material consolidation and helps mitigate process-related risks such as thermal cracking, porosity, keyholing and Marangoni effects.

Design/methodology/approach

304L stainless steel (SS) feedstock is used to fabricate test specimens using the LFP system. Imaging techniques are used to examine the melt pool dimensions and layer bonding. In addition, the parts are evaluated for residual stresses, mechanical strength and grain size.

Findings

Compared to CPW, SPW provides a more reliable heating/cooling relationship that is less dependent on part geometry. The overlapping spot welds distribute heat more evenly, minimizing the risk of elevated temperatures during the AM process. In addition, the resulting dense and uniform weld beads contribute to lower residual stresses in the printed part.

Originality/value

To the best of the authors’ knowledge, this is the first study to thoroughly investigate SPW as a scanning strategy using the LFP process. In general, SPW presents a promising strategy for securing embedded sensors into LFP parts while minimizing residual stresses.

Details

Rapid Prototyping Journal, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 12 September 2024

Nandalal Acharjee, Subhas Ganguly, Prasenjit Biswas and Bidyapati Sarangi

The purpose of this study is to develop black pigmented ceramic stoneware bodies that integrate various aspects of material composition and color potential. Recent research has…

Abstract

Purpose

The purpose of this study is to develop black pigmented ceramic stoneware bodies that integrate various aspects of material composition and color potential. Recent research has explored black pigmented calcium aluminosilicate glass (BPCG), a specialized material known for its unique properties, which holds promise for transforming the color capabilities of traditional ceramics.

Design/methodology/approach

In this investigation, initially composite ceramic sample (B-1) was prepared by milling process prior to sieve analysis to attain the particle size within 44 microns. Microanalysis and morphology and thermography were studied by energy-dispersive X-ray spectroscopy, scanning electron microscope and thermogravimetric analysis and found Sample-B-1 received attractive properties like firing shrinkage, porosity, bulk density and firing strength along with good pyro-plastic properties at various temperatures like 950°C, 1050°C, 1000°C and 1180°C. Furthermore, BPCG-assisted pigmented ceramic composites were synthesized with B-1 matrix. CIE lab investigation of the attributed composites (C-series) within selective soaking range of 5–20 min was performed, and the investigation found that prominent black hue appeared (L: 24.09, a*: −0.17, b*: −0.49) for C-10 containing appeared phases of Di-Co-Silicide (26%), Ni-Chromite, Stilpnomelane (rich in iron) as obtained by X-ray diffraction studies.

Findings

Ceramic material played a significant role in the realms of art and craft, as well as in technology. The artistic facet reveals concepts or ornamentation, while the craft echoes both traditional and functional appeal. Technology, on the other hand, involves the logical implementation behind the creation.

Originality/value

This C-10 Sample comprised the lower percentage of mullite which attributed that the BPCG homogeneously mixed in the matrix of base (B-1) and appeared as spinal staff. Therefore, BPCG was a potential candidate for ceramic metallization, and this traditional metallization processes often faced some challenges like uniformity and mixing in the ceramic composite domain practices. This study aimed to open up new avenues for artistic decoration and bridging the gap between traditional craftsmanship and modern technology. Furthermore, BPCG’s role in color assessment through shocking techniques added an exciting concept for the ceramic practitioners, designers or ceramic educators.

Details

Pigment & Resin Technology, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0369-9420

Keywords

Article
Publication date: 16 September 2024

Dmitry Leonidovich Kovalenko, Vy Uong Van, Van Phuc Mac, Thien Vuong Nguyen, Lan Pham Thi, Tuan Anh Nguyen, Vladimir Evgenevich Gaishun, Vasili Vasilievich Vaskevich and Dai Lam Tran

This paper aims to explore how graphene can improve the mechanical and anti-corrosion properties of TiO2-SiO2 sol-gel coating. This sol-gel coating has been prepared on aluminum…

Abstract

Purpose

This paper aims to explore how graphene can improve the mechanical and anti-corrosion properties of TiO2-SiO2 sol-gel coating. This sol-gel coating has been prepared on aluminum alloy substrate using graphene as both nano-filler and corrosion inhibitor.

Design/methodology/approach

To examine the effect of graphene on mechanical properties of sol-gel coating, the abrasion resistance, adhesion strength and scratch resistance of coating have been evaluated. To reveal the effect of graphene on the anti-corrosion property of coating for aluminum alloy, the electrochemical impedance spectroscopy (EIS) has been conducted in 3.5 Wt.% NaCl medium.

Findings

Scanning electron microscopy images indicate that graphene nanoplatelets (GNPs) have been homogeneously dispersed into the sol-gel coating matrices (at the contents from 0.1 to 0.5 Wt.%). Mechanical tests of coatings indicate that the graphene content of 0.5 Wt.% provides highest values of adhesion strength (1.48 MPa), scratch resistance (850 N) and abrasion strength (812 L./mil.) for the sol-gel coating. The EIS data show that the higher content of GNPs improve both R1 (coating) and R2 (coating/Al interface) resistances. In addition to enhancing the coating barrier performance (graphene acts as nanofiller/nano-reinforcer for coating matrix), other mechanism can be at work to account for the role of the graphene inhibitor in improving the anticorrosive performance at the coating/Al interface.

Originality/value

Application of graphene-based sol-gel coating for protection of aluminum and its alloy is very promising.

Details

Anti-Corrosion Methods and Materials, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0003-5599

Keywords

Open Access
Article
Publication date: 22 August 2024

Sean McConnell, David Tanner and Kyriakos I. Kourousis

Productivity is often cited as a key barrier to the adoption of metal laser-based powder bed fusion (ML-PBF) technology for mass production. Newer generations of this technology…

Abstract

Purpose

Productivity is often cited as a key barrier to the adoption of metal laser-based powder bed fusion (ML-PBF) technology for mass production. Newer generations of this technology work to overcome this by introducing more lasers or dramatically different processing techniques. Current generation ML-PBF machines are typically not capable of taking on additional hardware to maximise productivity due to inherent design limitations. Thus, any increases to be found in this generation of machines need to be implemented through design or adjusting how the machine currently processes the material. The purpose of this paper is to identify the most beneficial existing methodologies for the optimisation of productivity in existing ML-PBF equipment so that current users have a framework upon which they can improve their processes.

Design/methodology/approach

The review method used here is the preferred reporting items for systematic review and meta-analysis (PRISMA). This is complemented by using an artificial intelligence-assisted literature review tool known as Elicit. Scopus, WEEE, Web of Science and Semantic Scholar databases were searched for articles using specific keywords and Boolean operators.

Findings

The PRIMSA and Elicit processes resulted in 51 papers that met the criteria. Of these, 24 indicated that by using a design of experiment approach, processing parameters could be created that would increase productivity. The other themes identified include scan strategy (11), surface alteration (11), changing of layer heights (17), artificial neural networks (3) and altering of the material (5). Due to the nature of the studies, quantifying the effect of these themes on productivity was not always possible. However, studies citing altering layer heights and processing parameters indicated the greatest quantifiable increase in productivity with values between 10% and 252% cited. The literature, though not always explicit, depicts several avenues for the improvement of productivity for current-generation ML-PBF machines.

Originality/value

This systematic literature review provides trends and themes that aim to influence and support future research directions for maximising the productivity of the ML-PBF machines.

Details

Rapid Prototyping Journal, vol. 30 no. 11
Type: Research Article
ISSN: 1355-2546

Keywords

Open Access
Article
Publication date: 22 June 2022

Serena Summa, Alex Mircoli, Domenico Potena, Giulia Ulpiani, Claudia Diamantini and Costanzo Di Perna

Nearly 75% of EU buildings are not energy-efficient enough to meet the international climate goals, which triggers the need to develop sustainable construction techniques with…

1305

Abstract

Purpose

Nearly 75% of EU buildings are not energy-efficient enough to meet the international climate goals, which triggers the need to develop sustainable construction techniques with high degree of resilience against climate change. In this context, a promising construction technique is represented by ventilated façades (VFs). This paper aims to propose three different VFs and the authors define a novel machine learning-based approach to evaluate and predict their energy performance under different boundary conditions, without the need for expensive on-site experimentations

Design/methodology/approach

The approach is based on the use of machine learning algorithms for the evaluation of different VF configurations and allows for the prediction of the temperatures in the cavities and of the heat fluxes. The authors trained different regression algorithms and obtained low prediction errors, in particular for temperatures. The authors used such models to simulate the thermo-physical behavior of the VFs and determined the most energy-efficient design variant.

Findings

The authors found that regression trees allow for an accurate simulation of the thermal behavior of VFs. The authors also studied feature weights to determine the most relevant thermo-physical parameters. Finally, the authors determined the best design variant and the optimal air velocity in the cavity.

Originality/value

This study is unique in four main aspects: the thermo-dynamic analysis is performed under different thermal masses, positions of the cavity and geometries; the VFs are mated with a controlled ventilation system, used to parameterize the thermodynamic behavior under stepwise variations of the air inflow; temperatures and heat fluxes are predicted through machine learning models; the best configuration is determined through simulations, with no onerous in situ experimentations needed.

Details

Construction Innovation , vol. 24 no. 7
Type: Research Article
ISSN: 1471-4175

Keywords

Article
Publication date: 20 September 2024

Renato Zona, Luca Esposito, Simone Palladino and Vincenzo Minutolo

Heterogeneous and micro-structured materials have been the object of multiscale and homogenization techniques aimed at recognizing the elastic properties of the equivalent…

Abstract

Purpose

Heterogeneous and micro-structured materials have been the object of multiscale and homogenization techniques aimed at recognizing the elastic properties of the equivalent continuum. The proposed investigation deals with the mechanical characterization of the heterogeneous material structured metamaterials through analyzing the ultimate strength using the limit analysis of the Representative Volume Element (RVE). To get the desired material strength, a novel finite element formulation based on the derivation of self-equilibrated solutions through the finite elements devoted to calculating the lower bound theorem has been implemented together with the limit analysis in Melàn’s formulation.

Design/methodology/approach

The finite element formulation is based on discrete mapping of Volterra dislocations in the structure using isoparametric representation. Using standard finite element techniques, the linear operator V, which relates the self-equilibrated internal solicitation to displacement-like nodal parameters, has been built through finite element discretization of displacement and strain.

Findings

The proposed work presented an elastic homogenization of the mechanical properties of an elementary cell with a geometry known in the literature, the isotropic truss. The matrix of elastic constants was calculated by subjecting the RVE to numerical load tests, simulated with a commercial FEM calculation code. This step showed the dependence of the isotropy properties, verified with Zener theory, on the density of the RVE. The isotropy condition of the material is only achieved for certain section ratios between body-centered cubic (BCC) and face-centered cubic (FCC), neglecting flexural effects at the nodes. The density that satisfies Zener’s conditions represents the isotropic geomatics of the isotropic truss.

Originality/value

For the isotropic case, the VFEM procedure was used to evaluate the isotropy of the limit domain and was compared with the Mises–Schleicher limit domain. The evaluation of residual ductility and dissipation energy allowed a measurement parameter for the limit anisotropy to be defined. The novelty of the proposal consisted in the formulation of both the linearized and the nonlinear limit locus of the material; hence, it furnished the starting point for further limit analysis of the structures whose elementary volume has been described through the proposed approach.

Details

Engineering Computations, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0264-4401

Keywords

1 – 10 of 26