Search results

21 – 30 of over 65000
Article
Publication date: 30 July 2019

Argyro Drakakaki, Alkiviadis Apostolopoulos and Charis Apostolopoulos

The safety of reinforced concrete structures is generally related to the expected service life of their individual materials. Corrosion damage manifesting on steel reinforcement…

Abstract

Purpose

The safety of reinforced concrete structures is generally related to the expected service life of their individual materials. Corrosion damage manifesting on steel reinforcement is usually underestimated, although it greatly affects both load bearing capacity and plastic deformation limits of steel reinforcement. Corrosion damage degree has a great impact on the life expectancy of structures. This paper aims to discuss these issues.

Design/methodology/approach

In the present study, an effort has been made to examine and present critical parameters, which are significantly responsible for the differentiation of the corrosion damage level, as far as mass loss is concerned. Consequently, the size effect of the exposed – to the aggressive conditions – area of the specimen, as well as the volume of the protected (against corrosion) area, was examined in detail.

Findings

Differential aeration greatly affects the results of corrosion on the material, given that under both high and low oxygen concentration corrosion process is still ongoing.

Originality/value

Findings proceeded are worth mentioning, as they may contribute to a more pertinent evaluation of the corrosion damage (as far as mass loss is concerned), restricting the risk of erroneous predictions concerning the mechanical behavior of steel reinforcement.

Details

International Journal of Structural Integrity, vol. 11 no. 5
Type: Research Article
ISSN: 1757-9864

Keywords

Article
Publication date: 17 September 2019

Marina Macedo de Abreu and Alberto Casado Lordsleem Jr

The purpose of this paper is to establish and evaluate the concrete loss and labor productivity (LP) indicators in the concreting step of aluminum formwork system (AFS) in…

Abstract

Purpose

The purpose of this paper is to establish and evaluate the concrete loss and labor productivity (LP) indicators in the concreting step of aluminum formwork system (AFS) in construction in Brazil. The loss and productivity indicators are directed to a regional database (Pernambuco, Brazil).

Design/methodology/approach

Case study was selected as the most appropriate approach. The methodology included data collection in the construction project with 10 residential towers of 320 apartments, in the city of Jaboatão dos Guararapes, Brazil, throughout 82 concrete pouring days using 415 concrete mixer trucks, with a total of 2,582.50 m3 of concrete.

Findings

The findings identified an average concrete loss of 2.6 percent and the LP indicator varying between 0.15 and 0.97 WH/m3. It could be verified that the loss indicators were influenced mainly by the learning effect associated to the qualification of the labor. In addition, the productivity indicators were strongly influenced by delays at the beginning of the concrete pouring and by problems coming from the sequence of concrete supply.

Originality/value

LP indicators are still literature restricted, especially considering only the concreting step. The direct observations of this study allow the identification of factors that inhibit productivity. The comparison of indicators for the concreting service between the ASF and the conventional system attests to the speed, low cost and efficiency of the system studied in this paper.

Details

Built Environment Project and Asset Management, vol. 9 no. 5
Type: Research Article
ISSN: 2044-124X

Keywords

Article
Publication date: 5 August 2021

Kawaljit Singh Randhawa and Ashwin Patel

This paper aims to investigate the tribological performance, i.e. abrasion resistance, friction coefficient and wear rates, of self-lubricated water conditioned polyamide6/boric…

95

Abstract

Purpose

This paper aims to investigate the tribological performance, i.e. abrasion resistance, friction coefficient and wear rates, of self-lubricated water conditioned polyamide6/boric oxide composites.

Design/methodology/approach

Polyamide6 and polyamide6/boric oxide self-lubricated composites were immersed in water for 15 days to analyze the effect of water conditioning on friction, wear and abrasion resistance. Tribological testing on pin-on-disc tribometer and abrasion resistance testing on TABER abrader were performed to see the friction coefficient and wear rates of materials. The scanning electron microscopy (SEM) characterizations were performed to analyze the wear tracks.

Findings

Tribological testing results revealed the loss in abrasive resistance, but there was an improvement in frictional coefficient and wear rates with steel after water absorption. The SEM images clearly show less depth of wear tracks in water-conditioned materials than dry ones. Water conditioning was found supportive in the formation of smooth lubricating transfer film on steel disc during the tribological testing.

Originality/value

The tribological behaviour of polymer composites is different in dry and in high humidity or water conditions. Experiments were performed to investigate B2O3 solid lubricant filler effectiveness on tribological behaviour of water-conditioned polyamide composites. Bonding between polyamide6 and water molecules plus the formation of orthoboric acid was found advantageous in decreasing the friction coefficient and wear rates of composites.

Details

Pigment & Resin Technology, vol. 51 no. 4
Type: Research Article
ISSN: 0369-9420

Keywords

Article
Publication date: 1 December 2005

S. Subramanian and R. Bhuvaneswari

This paper presents a novel multiobjective optimal design of three phase induction motor using simulated annealing (SA) technique for minimizing annual material cost and annual…

Abstract

Purpose

This paper presents a novel multiobjective optimal design of three phase induction motor using simulated annealing (SA) technique for minimizing annual material cost and annual loss cost as two objectives.

Design/methodology/approach

The design problem of a three‐phase induction motor is presented as a nonlinear multicriterion optimization problem on the basis of minimizing the annual cost of the motor. The annual cost referred is the sum of the annual interest and depreciation of motor active material costs, annual cost of active power loss of the motor and the annual energy cost required to supply such power loss. A computer package is built which generates initial values of motor parameters and gives the optimal values of these parameters with more than one objective function and nonviolated constraints. The problem is solved by giving weights which reflect the priority of objective functions. The SA technique is used as a tool to solve the problem.

Findings

To verify the validity, the proposed method is applied to a three‐phase induction motor design. From the results, it is found that the proposed method is fast and efficient and hence it is useful for multiobjective design of an induction motor.

Originality/value

This method is particularly useful in satisfying the needs of motor producer and consumer by prioritizing their needs and finally arriving at a best compromise solution.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering, vol. 24 no. 4
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 21 March 2016

Kamaljit Singh Boparai, Rupinder Singh and Harwinder Singh

In this study the friction and wear behavior of fused deposition modeling (FDM) parts fabricated with composite material and acrylonitrile butadienestyrene (ABS) material

1804

Abstract

Purpose

In this study the friction and wear behavior of fused deposition modeling (FDM) parts fabricated with composite material and acrylonitrile butadiene styrene (ABS) material feedstock filament were realized and compared under dry sliding conditions.

Design/methodology/approach

The tests were performed by applying the load of 5, 10, 15 and 20 N with sliding velocity of 0.63 m/s for the duration of 5 and 10 min at room temperature.

Findings

The results highlight various wear mechanisms such as adhesion, abrasion and fatigue during the investigation. It was observed that the wear volume, friction force, friction co-efficient and temperature were sensitive to the applied load and time duration. The composite material showed a remarkable improvement in wear properties as compared to the ABS material.

Research limitations/implications

The investigations reported in the present research work is based on comparative analysis (of composite material and ABS material feedstock filament). The results may be different in practical applications because of different operating conditions.

Practical implications

The parts fabricated with proposed composite material feedstock filament are highly wear resistant than basic ABS filament. This may lead to the development of better wear resistance components for numerous field applications.

Originality/value

The potential of this research work is to fabricate FDM parts with composite material feedstock filament to cater need of wear resistant industrial components.

Details

Rapid Prototyping Journal, vol. 22 no. 2
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 1 September 1970

In the classic Introduction to Work Study, which is published by the International Labour Office, there is a list of the resources which collectively determine the productivity of…

Abstract

In the classic Introduction to Work Study, which is published by the International Labour Office, there is a list of the resources which collectively determine the productivity of a firm. They are set out as lands and buildings, materials, machines and manpower.

Details

Work Study, vol. 19 no. 9
Type: Research Article
ISSN: 0043-8022

Article
Publication date: 15 June 2018

Nicholas Alexander Meisel, David A. Dillard and Christopher B. Williams

Material jetting approximates composite material properties through deposition of base materials in a dithered pattern. This microscale, voxel-based patterning leads to macroscale…

Abstract

Purpose

Material jetting approximates composite material properties through deposition of base materials in a dithered pattern. This microscale, voxel-based patterning leads to macroscale property changes, which must be understood to appropriately design for this additive manufacturing (AM) process. This paper aims to identify impacts on these composites’ viscoelastic properties due to changes in base material composition and distribution caused by incomplete dithering in small features.

Design/methodology/approach

Dynamic mechanical analysis (DMA) is used to measure viscoelastic properties of two base PolyJet materials and seven “digital materials”. This establishes the material design space enabled by voxel-by-voxel control. Specimens of decreasing width are tested to explore effects of feature width on dithering’s ability to approximate macroscale material properties; observed changes are correlated to multi-material distribution via an analysis of ingoing layers.

Findings

DMA shows storage and loss moduli of preset composites trending toward the iso-strain boundary as composition changes. An added iso-stress boundary defines the property space achievable with voxel-by-voxel control. Digital materials exhibit statistically significant changes in material properties when specimen width is under 2 mm. A quantified change in same-material droplet groupings in each composite’s voxel pattern shows that dithering requires a certain geometric size to accurately approximate macroscale properties.

Originality/value

This paper offers the first quantification of viscoelastic properties for digital materials with respect to material composition and identification of the composite design space enabled through voxel-by-voxel control. Additionally, it identifies a significant shift in material properties with respect to feature width due to dithering pattern changes. This establishes critical design for AM guidelines for engineers designing with digital materials.

Details

Rapid Prototyping Journal, vol. 24 no. 5
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 6 February 2009

Rambabu Arji, D.K. Dwivedi and S.R. Gupta

The paper's aim is to investigate the sand slurry erosive wear behaviour of Ni‐Cr‐Si‐B coating deposited on mild steel by flame spraying process under different test conditions.

Abstract

Purpose

The paper's aim is to investigate the sand slurry erosive wear behaviour of Ni‐Cr‐Si‐B coating deposited on mild steel by flame spraying process under different test conditions.

Design/methodology/approach

Flame sprayed coatings of Ni‐Cr‐Si‐B were developed on mild steel substrate The slurry pot tester was used to evaluate wear behaviour of the coating and mild steel. The erosive wear test was conducted using 20 and 40 per cent silica sand slurry at three rotational speeds (600, 800 and 1,000 rpm).

Findings

Slurry erosive wear of the coating showed that in case of 20 per cent silica sand slurry weight loss increases with increase in rotational speed from 600 to 1,000 rpm while in case of 40 per cent silica sand slurry weight loss first increases with increase in rotational speed from 600 to 800 rpm followed by marginal decrease in weight loss with further increase in rotational speed from 800 to 1,000 rpm. Increase in wear resistance due to thermal spray coating of Ni base alloy on mild steel was quantified as wear ratio (weight loss of mild steel and that of coating under identical erosion test conditions). Wear ratio for Ni‐Cr‐Si‐B coating was found in range of 1.4‐2.8 under different test conditions. The microstructure and microhardness study of coating has been reported and attempts have been to discuss wear behaviour in light of microstructure and microhardness. Scanning electron microscope (SEM) study of wear surface showed that loss of material from the coating surface takes place by indentation, crater formation and lip formation and its fracture.

Practical implications

It would assist in estimating the erosion wear performance of flame sprayed Ni‐Cr coatings and their affects of wear resistance.

Originality/value

Erosion wear of flame sprayed coatings in sand slurry media medium is substantiated by extensive SEM study.

Details

Industrial Lubrication and Tribology, vol. 61 no. 1
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 22 March 2021

Xueqin Wang, Yiik Diew Wong, Kevin X. Li and Kum Fai Yuen

E-commerce last-mile logistics is undergoing dramatic changes. By inviting consumers to participate in self-collection, they collectively form a mass crowd of resources that can…

1088

Abstract

Purpose

E-commerce last-mile logistics is undergoing dramatic changes. By inviting consumers to participate in self-collection, they collectively form a mass crowd of resources that can be integrated into last-mile logistics. However, consumers' participation may lead to a spectrum of value outcomes from value co-creation to co-destruction. Therefore, the purpose of this paper is to critically examine the value formation process focussing on micro-level practices and resource outcomes.

Design/methodology/approach

Anchored on practice theory and resource conservation theory, content analysis is adopted to analyse 546 practice-based experiences extracted from a leading social media platform.

Findings

The analysis reveals five sequential practices of self-collection: purchasing, delivering, notifying, receiving and confirming. Furthermore, the co-created practices are characterised by gains in material, esteem, social and energy resources of the interacting actors. Meanwhile, the co-destructed practices cause a chain of resource losses, where the interacting actors suffer primary losses which subsequently triggers consumers' coping behaviours and further destroys resources for all.

Research limitations/implications

Focussing on constituent service practices, this study zooms into the value formation process. The authors contribute to logistics literature with a service-dominant logic by stressing end-consumers' involvement in the creation and consumption of last-mile logistics.

Originality/value

This study conceptualises the sources and consequences of the nuanced service practices (value formation or destruction) of self-collection. A unified framework is thus proposed, which guides logistics service providers to channel consumers towards more constructive participation in last-mile logistics.

Details

The International Journal of Logistics Management, vol. 32 no. 3
Type: Research Article
ISSN: 0957-4093

Keywords

Article
Publication date: 12 September 2016

Gülcan Toktaş and İmren Öztürk Yılmaz

The purpose of this study is to investigate the tribological properties of society of automotive engineers (SAE) 430B bronze-graphite composite, supplied in the form of machined…

Abstract

Purpose

The purpose of this study is to investigate the tribological properties of society of automotive engineers (SAE) 430B bronze-graphite composite, supplied in the form of machined and graphite embedded, used in sheet forming industry.

Design/methodology/approach

Pin-on-disc wear tests were performed under a constant normal load of 15 N and a sliding velocity of 60 mm/s. Due to the extended usage of Fe-based alloys in forming dies, pin materials were selected as cold work tool steel, gray and ductile irons. The weight losses of the disc (SAE 430B bronze-graphite composite) and the pins (Fe-based alloys) were measured separately under various sliding distances (5,000, 10,000 and 15,000 m). The average friction coefficients and wear tracks were obtained.

Findings

It is concluded that dry sliding behavior of SAE 430B bronze-graphite composite is the worst when operated with GGG-70 ductile iron due to its highest abrasive effect. The high hardness and nodular shape of graphite increased the abrasiveness of ductile iron. The improvement in wear resistance reached up to maximum 90 per cent and the degradation in friction coefficient was about 50 per cent by embedding graphite solids in bronze disc at dry sliding conditions.

Originality/value

Although the machined and graphite embedded bronze composites are indispensable parts of forming dies, there is no scientific knowledge on their dry sliding behavior.

Details

Industrial Lubrication and Tribology, vol. 68 no. 6
Type: Research Article
ISSN: 0036-8792

Keywords

21 – 30 of over 65000