To read this content please select one of the options below:

Impact of material concentration and distribution on composite parts manufactured via multi-material jetting

Nicholas Alexander Meisel (School of Engineering Design, Technology, and Professional Programs, Pennsylvania State University, University Park, Pennsylvania, USA)
David A. Dillard (Department of Biomedical Engineering and Mechanics, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, USA)
Christopher B. Williams (Department of Mechanical Engineering, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, USA)

Rapid Prototyping Journal

ISSN: 1355-2546

Article publication date: 15 June 2018

Issue publication date: 20 September 2018

776

Abstract

Purpose

Material jetting approximates composite material properties through deposition of base materials in a dithered pattern. This microscale, voxel-based patterning leads to macroscale property changes, which must be understood to appropriately design for this additive manufacturing (AM) process. This paper aims to identify impacts on these composites’ viscoelastic properties due to changes in base material composition and distribution caused by incomplete dithering in small features.

Design/methodology/approach

Dynamic mechanical analysis (DMA) is used to measure viscoelastic properties of two base PolyJet materials and seven “digital materials”. This establishes the material design space enabled by voxel-by-voxel control. Specimens of decreasing width are tested to explore effects of feature width on dithering’s ability to approximate macroscale material properties; observed changes are correlated to multi-material distribution via an analysis of ingoing layers.

Findings

DMA shows storage and loss moduli of preset composites trending toward the iso-strain boundary as composition changes. An added iso-stress boundary defines the property space achievable with voxel-by-voxel control. Digital materials exhibit statistically significant changes in material properties when specimen width is under 2 mm. A quantified change in same-material droplet groupings in each composite’s voxel pattern shows that dithering requires a certain geometric size to accurately approximate macroscale properties.

Originality/value

This paper offers the first quantification of viscoelastic properties for digital materials with respect to material composition and identification of the composite design space enabled through voxel-by-voxel control. Additionally, it identifies a significant shift in material properties with respect to feature width due to dithering pattern changes. This establishes critical design for AM guidelines for engineers designing with digital materials.

Keywords

Citation

Meisel, N.A., Dillard, D.A. and Williams, C.B. (2018), "Impact of material concentration and distribution on composite parts manufactured via multi-material jetting", Rapid Prototyping Journal, Vol. 24 No. 5, pp. 872-879. https://doi.org/10.1108/RPJ-01-2017-0005

Publisher

:

Emerald Publishing Limited

Copyright © 2018, Emerald Publishing Limited

Related articles