Search results

1 – 10 of over 1000
Article
Publication date: 11 September 2019

Swapnil Vyavahare, Soham Teraiya, Deepak Panghal and Shailendra Kumar

Fused deposition modelling (FDM) is the most economical additive manufacturing technique. The purpose of this paper is to describe a detailed review of this technique. Total 211…

3700

Abstract

Purpose

Fused deposition modelling (FDM) is the most economical additive manufacturing technique. The purpose of this paper is to describe a detailed review of this technique. Total 211 research papers published during the past 26 years, that is, from the year 1994 to 2019 are critically reviewed. Based on the literature review, research gaps are identified and the scope for future work is discussed.

Design/methodology/approach

Literature review in the domain of FDM is categorized into five sections – (i) process parameter optimization, (ii) environmental factors affecting the quality of printed parts, (iii) post-production finishing techniques to improve quality of parts, (iv) numerical simulation of process and (iv) recent advances in FDM. Summary of major research work in FDM is presented in tabular form.

Findings

Based on literature review, research gaps are identified and scope of future work in FDM along with roadmap is discussed.

Research limitations/implications

In the present paper, literature related to chemical, electric and magnetic properties of FDM parts made up of various filament feedstock materials is not reviewed.

Originality/value

This is a comprehensive literature review in the domain of FDM focused on identifying the direction for future work to enhance the acceptability of FDM printed parts in industries.

Details

Rapid Prototyping Journal, vol. 26 no. 1
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 18 April 2017

Jasgurpreet Singh Chohan and Rupinder Singh

The purpose of this paper is to review the various pre-processing and post-processing approaches used to ameliorate the surface characteristics of fused deposition modelling (FDM

2302

Abstract

Purpose

The purpose of this paper is to review the various pre-processing and post-processing approaches used to ameliorate the surface characteristics of fused deposition modelling (FDM)-based acrylonitrile butadiene styrene (ABS) prototypes. FDM being simple and versatile additive manufacturing technique has a calibre to comply with present need of tailor-made and cost-effective products with low cycle time. But the poor surface finish and dimensional accuracy are the primary hurdles ahead the implementation of FDM for rapid casting and tooling applications.

Design/methodology/approach

The consequences and scope of FDM pre-processing and post-processing parameters have been studied independently. The comprehensive study includes dominance, limitations, validity and reach of various techniques embraced to improve surface characteristics of ABS parts. The replicas of hip implant are fabricated by maintaining the optimum pre-processing parameters as reviewed, and a case study has been executed to evaluate the capability of vapour smoothing process to enhance surface finish.

Findings

The pre-processing techniques are quite deficient when different geometries are required to be manufactured within limited time and required range of surface finish and accuracy. The post-processing techniques of surface finishing, being effective disturbs the dimensional stability and mechanical strength of parts thus incapacitates them for specific applications. The major challenge for FDM is the development of precise, automatic and controlled mass finishing techniques with low cost and time.

Research limitations/implications

The research assessed the feasibility of vapour smoothing technique for surface finishing which can make consistent castings of customized implants at low cost and shorter lead times.

Originality/value

The extensive research regarding surface finish and dimensional accuracy of FDM parts has been collected, and inferences made by study have been used to fabricate replicas to further examine advanced finishing technique of vapour smoothing.

Details

Rapid Prototyping Journal, vol. 23 no. 3
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 7 September 2022

Abdul Wahab Hashmi, Harlal Singh Mali and Anoj Meena

The purpose of this paper is to study the functionality of additively manufactured (AM) parts, mainly depending on their dimensional accuracy and surface finish. However, the…

Abstract

Purpose

The purpose of this paper is to study the functionality of additively manufactured (AM) parts, mainly depending on their dimensional accuracy and surface finish. However, the products manufactured using AM usually suffer from defects like roughness or uneven surfaces. This paper discusses the various surface quality improvement techniques, including how to reduce surface defects, surface roughness and dimensional accuracy of AM parts.

Design/methodology/approach

There are many different types of popular AM methods. Unfortunately, these AM methods are susceptible to different kinds of surface defects in the product. As a result, pre- and postprocessing efforts and control of various AM process parameters are needed to improve the surface quality and reduce surface roughness.

Findings

In this paper, the various surface quality improvement methods are categorized based on the type of materials, working principles of AM and types of finishing processes. They have been divided into chemical, thermal, mechanical and hybrid-based categories.

Research limitations/implications

The review has evaluated the possibility of various surface finishing methods for enhancing the surface quality of AM parts. It has also discussed the research perspective of these methods for surface finishing of AM parts at micro- to nanolevel surface roughness and better dimensional accuracy.

Originality/value

This paper represents a comprehensive review of surface quality improvement methods for both metals and polymer-based AM parts.

Graphical abstract of surface quality improvement methods

Details

Rapid Prototyping Journal, vol. 29 no. 3
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 1 December 1996

Mukesh K. Agarwala, Vikram R. Jamalabad, Noshir A. Langrana, Ahmad Safari, Philip J. Whalen and Stephen C. Danforth

Commercial solid freeform fabrication (SFF) systems, which have been developed for fabrication of wax and polymer parts for form and fit and secondary applications, such as moulds…

5918

Abstract

Commercial solid freeform fabrication (SFF) systems, which have been developed for fabrication of wax and polymer parts for form and fit and secondary applications, such as moulds for casting, etc., require further improvements for use in direct processing of structural ceramic and metal parts. Defects, both surface as well as internal, are undesirable in SFF processed ceramic and metal parts for structural and functional applications. Process improvements are needed before any SFF technique can successfully be commercialized for structural ceramic and metal processing. Describes process improvements made in new SFF techniques, called fused deposition of ceramics (FDC) and metals (FDMet), for fabrication of structural and functional ceramic and metal parts. They are based on an existing SFF technique, fused deposition modelling (FDM) and use commercial FDM systems. The current state of SFF technology and commercial FDM systems results in parts with several surface and internal defects which, if not eliminated, severely limit the structural properties of ceramic and metal parts thus produced. Describes systematically, in detail, the nature of these defects and their origins. Discusses several novel strategies for elimination of most of these defects. Shows how some of these strategies have successfully been implemented to result in ceramic parts with structural properties comparable to those obtained in conventionally processed ceramics.

Details

Rapid Prototyping Journal, vol. 2 no. 4
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 30 July 2019

Xia Gao, Daijun Zhang, Xiangning Wen, Shunxin Qi, Yunlan Su and Xia Dong

This work aims to develop a new kind of semicrystalline polymer filament and optimize its printing parameters in the fused deposition modeling process. The purpose of this work…

510

Abstract

Purpose

This work aims to develop a new kind of semicrystalline polymer filament and optimize its printing parameters in the fused deposition modeling process. The purpose of this work also includes producing FDM parts with good ductility.

Design/methodology/approach

A new kind of semicrystalline filaments composed of long-chain polyamide (PA)1012 was prepared by controlling screw speed and pulling speed carefully. The optimal printing parameters for PA1012 filaments were explored through investigating dimensional accuracy and bonding strength of FDM parts. Furthermore, the mechanical properties of PA1012 specimens were also evaluated by varying nozzle temperatures and raster angles.

Findings

It is found that PA1012 filaments can accommodate for FDM process under suitable printing parameters. The print quality and mechanical properties of FDM parts highly depend on nozzle temperature and bed temperature. Even though higher temperatures facilitate stronger interlayer bonding, FDM parts with excellent tensile strength were obtained at a moderate nozzle temperature. Moreover, a bed temperature well above the glass transition temperature of PA1012 can eliminate shrinkage and distortion of FDM parts. As expected, FDM parts prepared with PA1012 filaments exhibit good ductility.

Originality/value

Results in this work demonstrate that the PA1012 filament allows the production of FDM parts with desired mechanical performance. This indicates the potential for overcoming the dependence on amorphous thermoplastics as a feedstock in the FDM technique. This work also provides insight into the effect of materials properties on the mechanical performance of FDM-printed parts.

Details

Rapid Prototyping Journal, vol. 25 no. 7
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 17 October 2017

Hao Li, Shuai Zhang, Zhiran Yi, Jie Li, Aihua Sun, Jianjun Guo and Gaojie Xu

This work aims to evaluate the influence of rheological properties of building materials on the bonding quality and ultimate tensile strength in the fused deposition modeling (FDM

1013

Abstract

Purpose

This work aims to evaluate the influence of rheological properties of building materials on the bonding quality and ultimate tensile strength in the fused deposition modeling (FDM) process, through the investigation of parts printed by semi-crystalline and amorphous resins. Little information is currently available about the influence of the crystalline nature on FDM-printed part quality.

Design/methodology/approach

Semi-crystalline polyamide 12 and amorphous acrylonitrile butadiene styrene (ABS) were used to assess the influence of rheological properties on bonding quality and the tensile strength, by varying three important process parameters: materials, liquefier temperature and raster orientation. A fractography of both tensile and freeze-fractured samples was also investigated.

Findings

The rheological properties, mainly the melt viscosity, were found to have a significant influence on the bonding quality of fused filaments. Better bonding quality and higher tensile strength of FDM parts printed with semi-crystalline PA12, as compared with amorphous ABS, are suggested to be a result of higher initial sintering rates owing to the lower melt viscosity of PA12 at low shear rates. Near-full dense PA12 parts were obtained by FDM.

Originality/value

This project provides a variety of data and insight regarding the effect of materials properties on the mechanical performance of FDM-printed parts. The results showed that FDM technique allows the production of PA12 parts with adequate mechanical performance, overcoming the greatest limitation of a dependence on amorphous thermoplastics as a feedstock for the production of prototypes.

Details

Rapid Prototyping Journal, vol. 23 no. 6
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 21 March 2016

Kamaljit Singh Boparai, Rupinder Singh and Harwinder Singh

The purpose of this study is to highlight the direct fabrication of rapid tooling (RT) with desired mechanical, tribological and thermal properties using fused deposition…

3660

Abstract

Purpose

The purpose of this study is to highlight the direct fabrication of rapid tooling (RT) with desired mechanical, tribological and thermal properties using fused deposition modelling (FDM) process. Further, the review paper demonstrated development procedure of alternative feedstock filament of low-cost composite material for FDM to extend the range of RT applications.

Design/methodology/approach

The alternative materials for FDM and their processing requirements for fabrication in filament form as reported by various researchers have been summarized. The literature demonstrates the role of various post-processing techniques on surface finish of FDM prints. Further, low-cost materials for feedstock filament have been investigated experimentally to check their adaptability/suitability for commercial FDM setup. The approach was to realize the requirements of FDM (melt flow rate, flexibility, stiffness, glass transition temperature and mechanical strength), necessary for the successful run of an alternative filament. The effect of constituents (additives, plasticizers, surfactants and fillers) in polymeric matrix on mechanical, tribological and thermal properties has been investigated.

Findings

It is possible to develop composite material feedstock as filament for commercial FDM setup without changing its hardware and software. Surface finish of the parts can further be improved by applying various post-processing techniques. Most of the composite parts have high mechanical strength, hardness, thermal stability, wear resistant and better bond formation than standard material parts.

Research limitations/implications

Future research may be focused on improving the surface quality of parts fabricated with composite feedstock, solving issues related to the uniform distribution of filled materials during the fabrication of feedstock filament which in turns further increases mechanical strength, high dimensional stability of composite filament and transferring the technology from laboratory scale to various industrial applications.

Practical implications

Potential applications of direct fabrication with RT includes rapid manufacturing (RM) of metal-filled parts and ceramic-filled parts (which have complex shape and cannot be rapidly made by any other manufacturing techniques) in the field of biomedical and dentistry.

Originality/value

This new manufacturing methodology is based on the proper selection and processing of various materials and additives to form high-performance, low-cost composite material feedstock filament (which fulfil the necessary requirements of FDM process). Finally, newly developed feedstock filament material has both quantitative and qualitative advantage in RT and RM applications as compared to standard material filament.

Details

Rapid Prototyping Journal, vol. 22 no. 2
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 2 February 2021

Ali Alperen Bakır, Resul Atik and Sezer Özerinç

This paper aims to provide an overview of the recent findings of the mechanical properties of parts manufactured by fused deposition modeling (FDM). FDM has become a widely used…

1013

Abstract

Purpose

This paper aims to provide an overview of the recent findings of the mechanical properties of parts manufactured by fused deposition modeling (FDM). FDM has become a widely used technique for the manufacturing of thermoplastic parts. The mechanical performance of these parts under service conditions is difficult to predict due to the large number of process parameters involved. The review summarizes the current knowledge about the process-property relationships for FDM-based three-dimensional printing.

Design/methodology/approach

The review first discusses the effect of material selection, including pure thermoplastics and polymer-matrix composites. Second, process parameters such as nozzle temperature, raster orientation and infill ratio are discussed. Mechanisms that these parameters affect the specimen morphology are explained, and the effect of each parameter on the strength of printed parts are systematically presented.

Findings

Mechanical properties of FDM-produced parts strongly depend on process parameters and are usually lower than injection-molded counterparts. There is a need to understand the effect of each parameter and any synergistic effects involved better.

Practical implications

Through the optimization of process parameters, FDM has the potential to produce parts with strength values matching those produced by conventional methods. Further work in the field will make the FDM process more suitable for the manufacturing of load-bearing components.

Originality/value

This paper presents a critical assessment of the current knowledge about the mechanical properties of FDM-produced parts and suggests future research directions.

Details

Rapid Prototyping Journal, vol. 27 no. 3
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 29 March 2021

Steffany N. Cerda-Avila, Hugo I. Medellín-Castillo and Theodore Lim

The purpose of this study is to evaluate the capability and performance of analytical models to predict the structural mechanical behaviour of parts fabricated by fused deposition…

Abstract

Purpose

The purpose of this study is to evaluate the capability and performance of analytical models to predict the structural mechanical behaviour of parts fabricated by fused deposition modelling (FDM).

Design/methodology/approach

A total of eight existing and newly proposed analytical models, tailored to satisfy the structural behaviour of FDM parts, are evaluated in terms of their capability to predict the ultimate tensile stress (UTS) and the elastic modulus (E) of parts made of polylactic acid (PLA) by the FDM process. This evaluation is made by comparing the structural properties predicted by these models with the experimental results obtained from tensile tests on FDM specimens fabricated with variable infill percentage, perimeter layers and build orientation.

Findings

Some analytical models are able to predict with high accuracy (prediction errors smaller than 5%) the structural behaviour of FDM and categories of similar additive manufactured parts. The most accurate model is Gibson’s and Ashby, followed by the efficiency model and the two new proposed exponential and variant Duckworth models.

Research limitations/implications

The study has been limited to uniaxial loading conditions along three different build orientations.

Practical implications

The structural properties of FDM parts can be predicted by analytical models based on the process parameters and material properties. Product engineers can use these models during the design for the additive manufacturing process.

Originality/value

Existing methods to estimate the structural properties of FDM parts are based on experimental tests; however, such methods are time-consuming and costly. In this work, the use of analytical models to predict the structural properties of FDM parts is proposed and evaluated.

Details

Rapid Prototyping Journal, vol. 27 no. 4
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 17 October 2016

Eunseob Kim, Yong-Jun Shin and Sung-Hoon Ahn

This paper aims to investigate the water absorption behaviors and mechanical properties, according to water absorption and temperature, of components fabricated by fused…

1922

Abstract

Purpose

This paper aims to investigate the water absorption behaviors and mechanical properties, according to water absorption and temperature, of components fabricated by fused deposition modeling (FDM) and injection molding. The mechanical properties of FDM and injection molded parts were studied under several environmental conditions.

Design/methodology/approach

FDM components can be used as load-carrying elements under a range of moisture and temperature conditions. FDM parts show anisotropic mechanical properties according to build orientation. Components were fabricated from acrylonitrile-butadiene-styrene in three different orientations. The mechanical properties of parts fabricated by FDM were compared to injection molded components made from the same material. Water absorption tests were conducted in distilled water between 20 and 60°C to identify the maximum water absorption rate. Both moisture and temperature were considered as environmental variables in the tensile tests, which were conducted under various conditions to measure the effects on mechanical properties.

Findings

The water absorption behavior of FDM components obeyed Fickian diffusion theory, irrespective of the temperature. High temperatures accelerated the diffusion rate, although the maximum water absorption rate was not affected. The tensile strength of FDM parts under dry, room temperature conditions, was approximately 26-56 per cent that of injection molded parts, depending on build orientation. Increased temperature and water absorption had a more significant effect on FDM parts than injection molded components. The tensile strength was decreased by 67-71 per cent in hot, wet environments compared with dry, room temperature conditions.

Originality/value

The water absorption behavior of FDM components was investigated. The quantitative effects of temperature and moisture on tensile strength, modulus and strain were also measured. These results will contribute to the design of FDM parts for use under various environmental conditions.

Details

Rapid Prototyping Journal, vol. 22 no. 6
Type: Research Article
ISSN: 1355-2546

Keywords

1 – 10 of over 1000