Search results

1 – 10 of 105
Article
Publication date: 3 May 2013

M.Y. Abdollahzadeh Jamalabadi, M. Ghassemi and M.H. Hamedi

Natural convection heat transfer combined with radiation heat transfer is used in electronic cooling. The purpose of this paper is to investigate the thermal loading…

Abstract

Purpose

Natural convection heat transfer combined with radiation heat transfer is used in electronic cooling. The purpose of this paper is to investigate the thermal loading characteristics of an enclosure.

Design/methodology/approach

The goal is to investigate the effect of thermal radiation on thermal and flow characteristics of the cavity. The enclosure lower wall is at constant temperature and the upper wall is adiabatic while there are several discrete heat sources inside the cavity. In addition the effect of parameters such as heating number (Nr), aspect ratio (A), the number of heaters (N), and thermal radiation on the maximum and mean temperature of system, thermal loading characteristics of the system, Nusselt number, and the maximum stream function rate is performed. To solve the governing nonlinear differential equations (mass, momentum, and energy), a finite‐volume code based on Patankar's SIMPLE method is utilized.

Findings

Heat transfer by natural convection solely and it's conjugation with thermal radiation on the thermal and flow characteristics of the system is studied. Also a parametric study illustrating the influence of the heating number, aspect ratio, the number of heaters, and thermal radiation on the maximum and mean temperature of system, thermal loading characteristics of the system, Nusselt number, and the maximum stream function rate is investigated. The results have revealed that the thermal radiation have an important effect on the thermal characteristics of system at low heating numbers.

Research limitations/implications

The relevant governing parameters were: the heating number, Nr from 0.05 to 500, the cavity aspect ratio, A=H/L from 0.1 to 1 and the number of heaters, N, is an odd number ranging from 1 to 19

Practical implications

This work is numerical investigation only but can have engineering application such as electronic cooling, transformers, fusion reactors technology, hot structures, fuel cells, fibrous insulations and solar‐energy drying systems.

Originality/value

The effect of radiation in enclosure with discrete heaters within fluid has not been addressed in the literature.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 23 no. 4
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 7 November 2019

Mohammad Yaghoub Abdollahzadeh Jamalabadi

This paper aims to investigate the use of a piezo fan in an enclosure on wall heat transfer and thermal boundary layer profile in constant wall temperature situation.

Abstract

Purpose

This paper aims to investigate the use of a piezo fan in an enclosure on wall heat transfer and thermal boundary layer profile in constant wall temperature situation.

Design/methodology/approach

The governing partial differential equations of mass, momentum and energy in addition to boundary conditions are solved by lattice Boltzmann method. The problem is solved numerically using D2Q9 population's model and Bhatnagar–Gross–Krook collision model with a code written in MATLAB.

Findings

The effects of Prandtl number (Pr) and the frequency of piezo fan vibrations are critically investigated on the hydrothermal characteristics of the square cavity. The mesh independency study and the validation of the proposed model are accomplished with numerical results of Ghia et al. (1982) and analytical solution of pure conduction very good agreement is found between present results and benchmark findings. Generally, with increasing beam frequency, the heat removal from heat source increased. It is found that, for all Prandtl numbers, wall Nusselt number will increase with the increase of the beam frequency. This enhancement is more intense in higher Prandtl number.

Originality/value

Based on these results, the use of piezo fan in an enclosure can be classified as standalone as well as heat sink integrated cooling solution.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 30 no. 1
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 5 June 2024

Syed Modassir Hussain, Rohit Sharma, Manoj Kumar Mishra and Jitendra Kumar Singh

Nanosized honeycomb-configured materials are used in modern technology, thermal science and chemical engineering due to their high ultra thermic relevance. This study aims to…

Abstract

Purpose

Nanosized honeycomb-configured materials are used in modern technology, thermal science and chemical engineering due to their high ultra thermic relevance. This study aims to scrutinize the heat transmission features of magnetohydrodynamic (MHD) honeycomb-structured graphene nanofluid flow within two squeezed parallel plates under Joule dissipation and solar thermal radiation impacts.

Design/methodology/approach

Mass, energy and momentum preservation laws are assumed to find the mathematical model. A set of unified ordinary differential equations with nonlinear behavior is used to express the correlated partial differential equations of the established models, adopting a reasonable similarity adjustment. An approximate convergent numerical solution to these equations is evaluated by the shooting scheme with the Runge–Kutta–Fehlberg (RKF45) technique.

Findings

The impression of pertinent evolving parameters on the temperature, fluid velocity, entropy generation, skin friction coefficients and the heat transference rate is explored. Further, the significance of the irreversibility nature of heat transfer due to evolving flow parameters are evaluated. It is noted that the heat transference rate performance is improved due to the imposition of the allied magnetic field, Joule dissipation, heat absorption, squeezing and thermal buoyancy parameters. The entropy generation upsurges due to rising magnetic field strength while its intensification is declined by enhancing the porosity parameter.

Originality/value

The uniqueness of this research work is the numerical evaluation of MHD honeycomb-structured graphene nanofluid flow within two squeezed parallel plates under Joule dissipation and solar thermal radiation impacts. Furthermore, regression models are devised to forecast the correlation between the rate of thermal heat transmission and persistent flow parameters.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 34 no. 6
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 24 February 2021

Stepan Mikhailenko, Mohammad Ghalambaz and Mikhail A. Sheremet

This paper aims to study numerically the simulation of convective–radiative heat transfer under an effect of variable thermally generating source in a rotating square chamber. The…

Abstract

Purpose

This paper aims to study numerically the simulation of convective–radiative heat transfer under an effect of variable thermally generating source in a rotating square chamber. The performed analysis deals with a development of passive cooling system for the electronic devices.

Design/methodology/approach

The domain of interest of size H rotating at a fixed angular velocity has heat-conducting solid walls with a constant cooling temperature for the outer boundaries of the vertical walls and with thermal insulation for the outer borders of the horizontal walls. The chamber has a heater on the bottom wall with a time-dependent volumetric heat generation. The internal surfaces of the walls and the energy element are both grey diffusive emitters and reflectors. The fluid is transparent to radiation. Computational model has been written using non-dimensional parameters and worked out by the finite difference technique. The effect of the angular velocity, volumetric heat generation frequency and surface emissivity has been studied and described in detail.

Findings

The results show that growth of the surface emissivity leads to a diminution of the mean heater temperature, while a weak rotation can improve the energy transport for low volumetric thermal generation frequency.

Originality/value

An efficient computational approach has been used to work out this problem. The originality of this work is to analyze complex (conductive–convective–radiative) energy transport in a rotating system with a local element of time-dependent volumetric heat generation. To the best of the authors’ knowledge, an interaction of major heat transfer mechanisms in a rotating system with a heat-generating element is scrutinized for the first time. The results would benefit scientists and engineers to become familiar with the analysis of complex heat transfer in rotating enclosures with internal heat-generating units, and the way to predict the heat transfer rate in advanced technical systems, in industrial sectors including transportation, power generation, chemical sectors and electronics.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 31 no. 12
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 4 December 2017

Hakan F. Öztop, Nadezhda S. Bondareva, Mikhail A. Sheremet and Nidal Abu-Hamdeh

The main aim of this work is to perform a numerical analysis on natural convection with entropy generation in a partially open triangular cavity with a local heat source.

Abstract

Purpose

The main aim of this work is to perform a numerical analysis on natural convection with entropy generation in a partially open triangular cavity with a local heat source.

Design/methodology/approach

The unsteady governing dimensionless partial differential equations with corresponding initially and boundary conditions were numerically solved by the finite difference method of the second-order accuracy. The effects of dimensionless time is studied, and other governing parameters are Rayleigh number (Ra = 103 − 105), Prandtl number (Pr = 6.82), heater length (w/L = 0.2, 0.4 and 0.6) and distance of heater ratio (δ/L = 0.3).

Findings

An increase in the Rayleigh number leads to an increment of the fluid flow and heat transfer rates. Average Bejan number decreases with Ra as opposed to the average Nusselt number and average entropy generation. High values of Ra characterize a formation of long-duration oscillating behavior for the average Nusselt number and entropy generation.

Originality/value

The originality of this work is to analyze the entropy generation in natural convection in a one side open and partial heater-located cavity. This is a good application for electronical systems or building design.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 27 no. 12
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 8 August 2016

Mohammad yaghoub Abdollahzadeh Jamalabadi

The purpose of this paper is to find the time dependent thermal creep stress relaxation of a turbine blade and to investigate the effect thermal radiation of the adjacent turbine…

Abstract

Purpose

The purpose of this paper is to find the time dependent thermal creep stress relaxation of a turbine blade and to investigate the effect thermal radiation of the adjacent turbine blades on the temperature distribution of turbine blade and creep relaxation.

Design/methodology/approach

For this analysis, the creep flow behavior of Moly Ascoloy in operational temperature of gas turbine in full scale geometry is studied for various thermal radiation properties. The commercial software is used to pursue a coupled fields analysis for turbine blades in view of the structural force, materials kinematic hardening, and steady-state temperature field.

Findings

During steady-state operation, the thermal stress was found to be decreasing, whereas by considering the thermal radiation this rate was noticed to increase slightly. Also by increase of the distance between stator blades the thermal radiation effect is diminished. Finally, by decrease of the blade distance the failure probability and creep plastic deformation decrease.

Research limitations/implications

This paper describes the effect of thermal radiation in thermal-structural analysis of the gas turbine stator blade made of the super-alloy M-152.

Practical implications

Blade failures in gas turbine engines often lead to loss of all downstream stages and can have a dramatic effect on the availability of the turbine engines. There are many components in a gas turbine engine, but its performance is highly profound to only a few. The majority of these are hotter end rotating components.

Social implications

Three-dimensional finite element thermal and stress analyses of the blade were carried out for the steady-state full-load operation.

Originality/value

In the previous works the thermal radiation effects on creep behavior of the turbine blade have not performed.

Details

Multidiscipline Modeling in Materials and Structures, vol. 12 no. 2
Type: Research Article
ISSN: 1573-6105

Keywords

Article
Publication date: 5 May 2015

Akil Jassim Harfash

The purpose of this paper is to investigate a model for convection induced by the selective absorption of radiation in a fluid layer. The concentration based internal heat source…

Abstract

Purpose

The purpose of this paper is to investigate a model for convection induced by the selective absorption of radiation in a fluid layer. The concentration based internal heat source is modelled quadratically. Both linear instability and global nonlinear energy stability analyses are tested using three dimensional simulations. The results show that the linear threshold accurately predicts on the onset of instability in the basic steady state. However, the required time to arrive at the steady state increases significantly as the Rayleigh number tends to the linear threshold.

Design/methodology/approach

The author introduce the stability analysis of the problem of convection induced by absorption of radiation in fluid layer, then the author select a situations which have very big subcritical region. Then, the author develop a three dimensions simulation for the problem. To do this, first, the author transform the problem to velocity – vorticity formulation, then the author use a second order finite difference schemes. The author use implicit and explicit schemes to enforce the free divergence equation. The size of the Box is evaluated according to the normal modes representation. Moreover, the author adopt the periodic boundary conditions for velocity and temperature in the $x, y$ dimensions.

Findings

This paper explores a model for convection induced by the selective absorption of radiation in a fluid layer. The results demonstrate that the linear instability thresholds accurately predict the onset of instability. A three-dimensional numerical approach is adopted.

Originality/value

As the author believe, this paper is one of the first studies which deal with study of stability of convection using a three dimensional simulation. When the difference between the linear and nonlinear thresholds is very large, the comparison between these thresholds is very interesting and useful.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 25 no. 4
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 28 August 2024

Benjamin Arthur Frimpong, Augustine Senanu Komla Kukah, Andrew Victor K. Jnr Blay, Andrew Anafo, Richmond Makafui Kofi Kukah, Solomon Nii Offei Wellington and Dominic Nibeneanaa Kuutiero

Human activities in recent years with the excessive emission of greenhouse gases have had a negative impact on increasing global temperatures. In this regard, one of the best ways…

Abstract

Purpose

Human activities in recent years with the excessive emission of greenhouse gases have had a negative impact on increasing global temperatures. In this regard, one of the best ways to control it is to move toward sustainability with more use of renewable energy. Therefore, this study aims to assess the indicators of sustainable energy, explore benefits of sustainable energy and evaluate strategies to enhance energy sustainability in line with Sustainable Development Goal (SDG) 7.

Design/methodology/approach

Quantitative research strategy was adopted. Questionnaires were developed and administered through convenience and snowball sampling techniques to professionals in the energy sector. Data collected was validated by using Cronbach’s alpha coefficient and discriminant validity, whereas objectives were analyzed by using the relative importance index, mean score ranking and Kruskal–Wallis test.

Findings

From the findings, the significant indicators of sustainable energy were as follows: reduction in greenhouse gas emissions from energy production, use of renewable energies and policies on proper utilization of energy resources. Furthermore, a reduction in greenhouse gas emissions, less harm caused to the environment and an increase in the economic and social development process were the major benefits of sustainable energy. Finally, the findings of the study revealed that a strong and accounted policy program, adopting sustainable energy indicators and strategic communication are the significant strategies needed to be put in place to enhance energy sustainability.

Practical implications

The study serves as a reminder to policymakers of the crucial role they have to play in enhancing energy sustainability by putting in place suitable policy programs and methods.

Originality/value

The originality of this study is that it is arguably a pioneering study in Ghana and contributes to the body of knowledge on energy sustainability.

Details

International Journal of Energy Sector Management, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1750-6220

Keywords

Article
Publication date: 6 July 2020

Sathiyamoorthy Margabandu and Senthilkumar Subramaniam

This paper aims to deal with the influence of cutting parameters on drill thrust force, delamination and surface roughness in the drilling of laminated jute/carbon hybrid…

Abstract

Purpose

This paper aims to deal with the influence of cutting parameters on drill thrust force, delamination and surface roughness in the drilling of laminated jute/carbon hybrid composites.

Design/methodology/approach

The hybrid composites were fabricated with four layers of fabrics, which are arranged in different sequences using the hand-layup technique. Drilling experiments involved drilling of 6 mm diameter holes on the prepared composite plates using high-speed steel and solid carbide drill materials. Analysis of variance was used to find the influence, percentage contribution and significance of drilling parameters on drilling-induced damages. Scanning electron microscopy analysis was also conducted to understand the fracture behavior and surface morphology of the drilled holes.

Findings

The experimental study reveals that the most significant effect was the feed rate influenced the drill thrust force and the drill speed influenced both delamination factor and surface roughness of hybrid fiber-reinforced composites. From observations, the suggested combination for drilling jute/carbon hybrid composites is carbide drill, spindle speed of 1,750 rpm and feed of 0.03 mm/rev.

Originality/value

The new lightweight and low-cost hybrid composites were developed by hybridizing jute with carbon fabrics in the epoxy matrix with interplay arrangements. The influence of cutting speed and feed rate on delamination damage and surface roughness in the drilling of hybrid composites have been experimentally evaluated.

Details

World Journal of Engineering, vol. 17 no. 5
Type: Research Article
ISSN: 1708-5284

Keywords

Article
Publication date: 31 January 2020

Taiwo Ebenezer Abioye, Igbekele Samson Omotehinse, Isiaka Oluwole Oladele, Temitope Olumide Olugbade and Tunde Isaac Ogedengbe

The purpose of this study is to determine the effects of post-annealing and post-tempering processes on the microstructure, mechanical properties and corrosion resistance of the…

Abstract

Purpose

The purpose of this study is to determine the effects of post-annealing and post-tempering processes on the microstructure, mechanical properties and corrosion resistance of the AISI 304 stainless steel gas metal arc weldment.

Design/methodology/approach

Gas metal arc welding of AISI 304 stainless steel was carried out at an optimized processing condition. Thereafter, post-annealing and post-tempering processes were performed on the weldment. The microstructure, mechanical and electrochemical corrosion properties of the post-weld heat treated samples, as compared with the as-welded, were investigated.

Findings

The as-welded joint was characterized with sub-granular grain structure, martensite formation and Cr-rich carbides precipitates. This made it harder than the post-annealed and post-tempered joints. Because of slower cooling in the furnace, the post-annealed joint contained Cr-rich carbides precipitates. However, the microstructure of the post-tempered joint is more refined and significantly devoid of the carbide precipitates. Post-tempering process improved the elongation (∼23%), tensile (∼10%) and impact (∼31%) strengths of the gas metal arc AISI 304 stainless steel weldment, while post-annealing process improved the elongation (∼20%) and impact strength (∼72%). Owing to the refined grain structure and significant elimination of the Cr-rich carbide precipitates at the joint, the post-tempered joint exhibited better corrosion resistance in 3.5 Wt.% NaCl solution than the post-annealed and the as-welded joints.

Originality/value

The appropriate post-weld heat treatment that enhances microstructural homogeneity and quality of the AISI 304 gas metal arc welded joint was determined.

Details

World Journal of Engineering, vol. 17 no. 1
Type: Research Article
ISSN: 1708-5284

Keywords

1 – 10 of 105