Search results

1 – 10 of over 7000
Article
Publication date: 15 December 2023

Sanjay Kumar Singh, Lakshman Sondhi, Rakesh Kumar Sahu and Royal Madan

The purpose of the study is to perform elastic stress and deformation analysis of a functionally graded hollow disk under different conditions (rotation, gravity, internal…

Abstract

Purpose

The purpose of the study is to perform elastic stress and deformation analysis of a functionally graded hollow disk under different conditions (rotation, gravity, internal pressure, temperature with variable heat generation) and their combinations.

Design/methodology/approach

The classical method of solution, Navier's equation, is used to solve the governing equation. The analysis considers thermal and mechanical boundary conditions and takes into account the variation of material properties according to a power law function of the radius of the disk and grading parameter.

Findings

The findings of the study reveal distinct trends and behaviors based on different grading parameters. The influence of gravity is found to be negligible, resulting in similar patterns to the pure rotation case. Variable heat generation introduces non-linear temperature profiles and higher displacements, with stress values influenced by grading parameters.

Practical implications

The study provides valuable insights into the behavior of displacement and stresses in hollow disks, offering a deeper understanding of their mechanical response under varying conditions. These insights can be useful in the design and analysis of functionally graded hollow disks in various engineering applications.

Originality/value

The originality and value of this study lies in the consideration of various loading combinations of rotation, gravity, internal pressure and temperature with variable heat generation. Furthermore, the study of effect of various angular rotations, temperatures and pressures expands the understanding of the mechanical behavior of such structures, contributing to the existing body of knowledge in the field.

Details

International Journal of Structural Integrity, vol. 15 no. 1
Type: Research Article
ISSN: 1757-9864

Keywords

Article
Publication date: 13 September 2021

Taimoor Salahuddin, Ali Haider and Metib Alghamdi

The current investigation is communicated to analyze the characteristics of squeezed second grade nanofluid flow enclosed by infinite channel in the existence of both heat

Abstract

Purpose

The current investigation is communicated to analyze the characteristics of squeezed second grade nanofluid flow enclosed by infinite channel in the existence of both heat generation and variable viscosity. The leading non-linear energy and momentum PDEs are converted into non-linear ODEs by using suitable analogous approach.

Design/methodology/approach

Then the acquired non-linear problem is numerically calculated by using Bvp4c (built in) technique in MATLAB.

Findings

The influence of certain appropriate physical parameters, namely, squeezed number, fluid parameter, Brownian motion, heat generation, thermophoresis parameter, Prandtl number, Schmidt number and variable viscosity parameter on temperature, velocity and concentration distributions are studied and deliberated in detail. Numerical calculations of Sherwood number, Nusselt number and skin friction for distinct estimations of appearing parameters are analyzed through graphs and tables. It is examined that for large values of squeezing parameter, the velocity profile increases, whereas opposite behavior is noticed for large values of variable viscosity and fluid parameter. Moreover, temperature profile increases for large values of Brownian motion, thermophoresis parameter and squeezed parameter and decreases by increases Prandtl number and heat generation. Moreover, concentration profile increases for large values of Brownian motion parameter and decreases by increases thermophoresis parameter, squeezed parameter and Schmidt number.

Originality/value

No one has ever taken infinite squeezed channel having second grade fluid model with variable viscosity and heat generation.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 31 no. 11
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 24 February 2021

Stepan Mikhailenko, Mohammad Ghalambaz and Mikhail A. Sheremet

This paper aims to study numerically the simulation of convective–radiative heat transfer under an effect of variable thermally generating source in a rotating square chamber. The…

Abstract

Purpose

This paper aims to study numerically the simulation of convective–radiative heat transfer under an effect of variable thermally generating source in a rotating square chamber. The performed analysis deals with a development of passive cooling system for the electronic devices.

Design/methodology/approach

The domain of interest of size H rotating at a fixed angular velocity has heat-conducting solid walls with a constant cooling temperature for the outer boundaries of the vertical walls and with thermal insulation for the outer borders of the horizontal walls. The chamber has a heater on the bottom wall with a time-dependent volumetric heat generation. The internal surfaces of the walls and the energy element are both grey diffusive emitters and reflectors. The fluid is transparent to radiation. Computational model has been written using non-dimensional parameters and worked out by the finite difference technique. The effect of the angular velocity, volumetric heat generation frequency and surface emissivity has been studied and described in detail.

Findings

The results show that growth of the surface emissivity leads to a diminution of the mean heater temperature, while a weak rotation can improve the energy transport for low volumetric thermal generation frequency.

Originality/value

An efficient computational approach has been used to work out this problem. The originality of this work is to analyze complex (conductive–convective–radiative) energy transport in a rotating system with a local element of time-dependent volumetric heat generation. To the best of the authors’ knowledge, an interaction of major heat transfer mechanisms in a rotating system with a heat-generating element is scrutinized for the first time. The results would benefit scientists and engineers to become familiar with the analysis of complex heat transfer in rotating enclosures with internal heat-generating units, and the way to predict the heat transfer rate in advanced technical systems, in industrial sectors including transportation, power generation, chemical sectors and electronics.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 31 no. 12
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 15 August 2019

Muhammad Ijaz Khan, Shahid Farooq, Tasawar Hayat, Faisal Shah and Ahmed Alsaedi

The novel mechanical, chemical and thermodynamics characteristics of both single- and multi-wall carbon nanotubes (CNTs) make them a subject of much attention for the scientists…

Abstract

Purpose

The novel mechanical, chemical and thermodynamics characteristics of both single- and multi-wall carbon nanotubes (CNTs) make them a subject of much attention for the scientists and engineers from all domains. Fluid flows subject to CNTs are significant in biomedical engineering, energy storage systems, domestic and industrial cooling, automobile industries and solar energy collectors, etc. Keeping such effectiveness of CNTs in mind, this paper aims to examine peristaltic flow subject to CNTs in an asymmetric tapered channel. Both single and multiple walls CNTs are considered. The viscosity of nanomaterial depends on nanoparticles volume fraction and temperature. Total entropy rate through second law of thermodynamics is calculated. Heat source/sink and nonlinear heat flux are accounted.

Design/methodology/approach

The complicated flow expressions are simplified through lubrication approach. The velocity, temperature and entropy expressions are numerically solved by the built-in-shooting method.

Findings

The solutions for entropy generation, temperature and velocity are plotted, and the influences of pertinent variables are examined. The authors noticed that entropy generation is an increasing function of the Brinkman number.

Originality/value

The originality of this work is to communicate peristaltic CNTs-based nanomaterial peristaltic flow of viscous fluid in an asymmetric channel. No such consideration is yet published in the literature.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 29 no. 12
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 19 December 2017

Basant Kumar Jha and Babatunde Aina

The purpose of this paper is to further extend the work of Weng and Chen (2009) by considering heat generation/absorption nature of fluid.

Abstract

Purpose

The purpose of this paper is to further extend the work of Weng and Chen (2009) by considering heat generation/absorption nature of fluid.

Design/methodology/approach

Exact solution of momentum equation is derived separately in terms of Bessel’s function of first and second kind for heat-generating fluid and modified Bessel’s function of first and second kind for heat absorbing fluid.

Findings

During the course of numerical computations, it is found that skin friction and rate of heat transfer at outer surface of inner cylinder and inner surface of outer cylinder increases with the increase in heat generation parameter while the reverse trend is found in the case of heat absorption parameter.

Originality/value

In view of the amount of works done on natural convection with internal heat generation/absorption, it becomes interesting to investigate the effect of this important activity on natural convection flow in a vertical annular micro-channel. The purpose of this paper is to further extend the work of Weng and Chen (2009) by considering heat generation/absorption nature of fluid.

Details

Multidiscipline Modeling in Materials and Structures, vol. 14 no. 1
Type: Research Article
ISSN: 1573-6105

Keywords

Article
Publication date: 3 June 2019

Muhammad Waqas, Saira Naz, Tasawar Hayat, Sabir Ali Shehzad and Ahmed Alsaedi

The purpose of this paper is to introduce the concept of improved Fourier–Fick laws subjected to variable fluid characteristics. Flow analysis in the stagnation region of…

Abstract

Purpose

The purpose of this paper is to introduce the concept of improved Fourier–Fick laws subjected to variable fluid characteristics. Flow analysis in the stagnation region of Oldroyd-B fluid is elaborated. Heat generation is present.

Design/methodology/approach

Optimal homotopy analysis method is used to obtain convergent solutions.

Findings

The outcomes reveal reduction in penetration depths of temperature and concentration due to involvement of thermal and solutal relaxation times of fluxes.

Originality/value

As per the authors’ knowledge, such analysis has not yet been reported.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 29 no. 6
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 19 December 2022

Darya Loenko, Hakan F. Öztop and Mikhail A. Sheremet

Nowadays, the most important challenge in mechanical engineering, power engineering and electronics is a development of effective cooling systems for heat-generating units. Taking…

Abstract

Purpose

Nowadays, the most important challenge in mechanical engineering, power engineering and electronics is a development of effective cooling systems for heat-generating units. Taking into account this challenge, this study aims to deal with computational investigation of thermogravitational energy transport of pseudoplastic nanoliquid in an electronic chamber with a periodic thermally producing unit placed on the bottom heat-conducting wall of finite thickness under an influence of isothermal cooling from vertical side walls.

Design/methodology/approach

The control equations formulated using the Boussinesq approach, Ostwald–de Waele power law and single-phase nanofluid model with experimentally based correlations of Guo et al. for nanofluid dynamic viscosity and Jang and Choi for nanofluid thermal conductivity have been worked out by the in-house computational procedure using the finite difference technique. The impact of the Rayleigh number, nanoadditives concentration, frequency of the periodic heat generation from the local element and thickness of the bottom solid substrate on nanoliquid circulation and energy transport has been studied.

Findings

It has been found that a raise of the nanoadditives concentration intensifies the cooling of the heat-generating element, while a growth of the heat-generation frequency allows reducing the amplitude of the heater temperature.

Originality/value

Mathematical modeling of a pseudoplastic nanomaterial thermogravitational energy transport in an electronic cabinet with a periodic thermally generating unit, a heat-conducting substrate and isothermal cooling vertical surfaces to identify the possibility of intensifying heat removal from a heated surface.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 33 no. 5
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 17 December 2019

G. Sowmya, B.J. Gireesha and O.D. Makinde

The purpose of this paper is to study the thermal behaviour of a fully wet porous fin of longitudinal profile. The significance of radiative and convective heat transfer has been…

Abstract

Purpose

The purpose of this paper is to study the thermal behaviour of a fully wet porous fin of longitudinal profile. The significance of radiative and convective heat transfer has been scrutinised along with the simultaneous variation of surface emissivity, heat transfer coefficient and thermal conductivity with temperature. The emissivity of the surface and the thermal conductivity are considered as linear functions of the local temperature between fin and the ambient. Darcy’s model was considered to formulate the heat transfer equation. According to this, the porous fin permits the flow to penetrate through it and solid–fluid interaction occurs.

Design/methodology/approach

Runge–Kutta–Fehlberg fourth–fifth-order method has been used to solve the reduced non-dimensionalized ordinary differential equation involving highly nonlinear terms.

Findings

The impact of pertinent parameters, such as convective parameter, radiative parameter, conductivity parameter, emissivity parameter, wet porous parameter, etc., on the temperature profiles were elaborated mathematically with the plotted graphs. The heat transfer from the fin enhances with the rise in convective parameter.

Originality/value

The wet nature of the fin enhances heat transfer and in many practical applications the parameters, such as thermal conductivity, heat transfer coefficient as well as surface emissivity, vary with temperature. Hence, the main objective of the current study is to depict the significance of simultaneous variation in surface emissivity, heat transfer coefficient and thermal conductivity with respect to temperature under natural convection and radiation condition in a totally wetted longitudinal porous fin.

Details

Multidiscipline Modeling in Materials and Structures, vol. 16 no. 4
Type: Research Article
ISSN: 1573-6105

Keywords

Article
Publication date: 29 June 2020

Asgar Ali, R.N. Jana and S. Das

This paper aims to assess the effectiveness of Hall currents and power-law slip condition on the hydromagnetic convective flow of an electrically conducting power-law fluid over…

Abstract

Purpose

This paper aims to assess the effectiveness of Hall currents and power-law slip condition on the hydromagnetic convective flow of an electrically conducting power-law fluid over an exponentially stretching sheet under the effect of a strong variable magnetic field and thermal radiation. Flow formation is developed using the rheological expression of a power-law fluid.

Design/methodology/approach

The nonlinear partial differential equations describing the flow are transformed into the nonlinear ordinary differential equations by employing the local similarity transformations and then solved numerically by an effective numerical approach, namely, fourth-order Runge–Kutta integration scheme, along with the shooting iteration technique. The numerical solution is computed for different parameters by using the computational software MATLAB bvp4c. The bvp4c function uses the finite difference code as the default. This method is a fourth-order collocation method. The impacts of thermophysical parameters on velocity and temperature distributions, skin friction coefficients and Nusselt number in the boundary layer regime are exhibited through graphs and tables and deliberated with proper physical justification.

Findings

Our investigation conveys that Hall current has an enhancing behavior on velocity profiles and reduces skin friction coefficients. An increase in the power-law index is observed to deplete velocity and temperature evolution. The temperature for the pseudo-plastic (shear-thinning) fluid is relatively higher than the corresponding temperature of the dilatant (shear-thickening) fluid. The streamlines are more distorted and have low intensity near the surface of the sheet for the dilatant fluid than the pseudo-plastic fluid.

Social implications

The study is pertinent to the expulsion of polymer sheet and photographic films, hydrometallurgical industry, electrically conducting polymer dynamics, magnetic material processing, solutions and melts of polymer processing, purification of molten metals from nonmetallic. The results obtained in this work can be relevant in fluid mechanics and heat transfer applications.

Originality/value

The present problem has, to the authors' knowledge, not communicated thus far in the scientific literature. A comparative study with the published works is conducted to verify the accuracy of the present study. The results obtained in this analysis are significant in providing the standards for validating the accuracies of some numerical or empirical methods.

Details

Multidiscipline Modeling in Materials and Structures, vol. 17 no. 1
Type: Research Article
ISSN: 1573-6105

Keywords

Article
Publication date: 12 March 2018

Tengjiao Lin, Zi-ran Tan, Ze-yin He, Hong Cao and He-sheng Lv

This paper aims to introduce the moment of inertia of the driving and driven end of the clutch into the analysis of the transient temperature field of a friction plate and studied…

Abstract

Purpose

This paper aims to introduce the moment of inertia of the driving and driven end of the clutch into the analysis of the transient temperature field of a friction plate and studied the influencing factors on that, especially to a marine gearbox.

Design/methodology/approach

A three-dimensional transient heat transfer analysis model of a wet clutch friction plate used in a marine gearbox is developed, and the transient characteristics of the temperature field during engagement are analyzed with taking account of the influence factors such as the sliding friction coefficient, engaging revolving speed, moment of inertia and applied engagement pressure.

Findings

The paper found out that the hot spot appears on the surface of the friction plate, taking account of the effect of radial slots and spiral groove. To avoid damage to the friction plate as a result of overheating, the appropriate sliding friction coefficient, lower engaging revolving speed and reasonable selection of applied engagement pressure curve can ensure a favorable heating situation of the friction plate. The reasonable structural design for the clutch with a bigger moment of inertia of driving end and smaller moment of inertia of driven end can reduce the engaging time effectively and decrease the peak temperature of the friction plate.

Originality/value

This paper fulfils a method to study the transient temperature field of a wet clutch friction plate, especially used in a marine gearbox.

Details

Industrial Lubrication and Tribology, vol. 70 no. 2
Type: Research Article
ISSN: 0036-8792

Keywords

1 – 10 of over 7000