Search results

1 – 10 of 245
To view the access options for this content please click here
Article
Publication date: 1 August 2015

Mohammad Abdul Jalil, Rabindra Chandra Sinha, A.K.M. Mahabubuzzaman, Md. Milon Hossain and Mohammad Arafat Idris

A study is performed on the properties of jute-pineapple leaf fiber (PALF) blended yarn and 100% jute yarn. The jute-PALF blend ratios of two counts of yarn (5 and 7…

Abstract

A study is performed on the properties of jute-pineapple leaf fiber (PALF) blended yarn and 100% jute yarn. The jute-PALF blend ratios of two counts of yarn (5 and 7 lbs/spy) are 70:30 and 80:20 respectively. The physical properties of the blended yarns such as load at break, strain at break, tenacity at break, tensile modulus and quality ratio are tested and measured. It is observed from the test results that the physical properties of the blended yarns are better than those of the 100% jute yarn. The experimental results also show that the physical and structural properties of the blended yarn changes with the increase of PALF in the blend ratio. So the blending of PALF has a positive impact on yarn properties. Another study is done, in which it is found that surface appearance properties like color strength (K/S value) and whiteness, yellowness and brightness indices of the blended yarns are almost the same as those of the jute yarn due to the blending of jute-PALF. Therefore, the blending ratio does not cause any notable changes in the natural color of the jute yarn.

Details

Research Journal of Textile and Apparel, vol. 19 no. 3
Type: Research Article
ISSN: 1560-6074

Keywords

To view the access options for this content please click here
Article
Publication date: 19 June 2021

Sathiyamoorthy Margabandu and Senthil Kumar Subramaniam

The study aims to investigate the influence of fabric hybridization, stacking sequences and matrix materials on the tensile strength and damping behavior of jute/carbon…

Abstract

Purpose

The study aims to investigate the influence of fabric hybridization, stacking sequences and matrix materials on the tensile strength and damping behavior of jute/carbon reinforced hybrid composites.

Design/methodology/approach

The hybrid composites were fabricated with different sequences of fabric plies in epoxy and polyester matrix using a hand layup technique. The tensile and vibration characteristics were evaluated on the hybrid laminated composite models using finite element analysis (FEA), and the results were validated experimentally according to ASTM standards. The surface morphology of the fractured specimens was studied using the scanning electron microscope.

Findings

The experimental results revealed that the position of jute layers in the hybrid composites has a significant influence on the tensile strength and damping behavior. The hybrid composite with jute fiber at the surface sides and carbon fibers at the middle exhibited higher tensile strength with superior damping properties. Further, it is found that the experimental results are in good coherence with the FEA results.

Originality/value

The less weight and low-cost hybrid composites were fabricated by incorporating the jute and carbon fabrics in interply configurations. The influences of fabric hybridization, stacking arrangements and matrix materials on the tensile and vibration behavior of jute/carbon hybrid composites have been numerically evaluated and the results were experimentally validated.

Details

World Journal of Engineering, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1708-5284

Keywords

To view the access options for this content please click here
Article
Publication date: 6 June 2016

Md Asadul Hoque, Md Saiduzzaman, A. Nayeem Faruqui and Md Ashadul Islam

This paper aims to examine the loss of tenacity and colorfastness properties of bleached and modified (acrylonitrile, AN and methacrylonitrile, MAN) jute fibres dyed with…

Abstract

Purpose

This paper aims to examine the loss of tenacity and colorfastness properties of bleached and modified (acrylonitrile, AN and methacrylonitrile, MAN) jute fibres dyed with Reactive Orange 14 and Basic Violet 14.

Design/methodology/approach

Jute fibres dyed with Reactive Orange 14 and Basic Violet 14 were studied as a function of exposure to sunlight in air, washing with soap solution and spotting with acids and alkalis.

Findings

Dye absorption of Basic Violet 14 was higher compared to Reactive Orange 14 at optimum dyeing conditions. Optimum dye uptake of Reactive Orange 14 required relatively severe conditions compared to that of Basic Violet 14. Whereas, Reactive Orange 14 showed overall good colorfastness to sunlight and moderate in washing compared to Basic Violet 14. All the bleached and modified fibres showed good colorfastness to weak acids and alkalis regardless of Reactive Orange 14 and Basic Violet 14 dyes. The loss in tenacity was higher in the case of non-modified fibres, and among the modified fibres, Basic Violet 14 showed the lowest loss in tenacity in the exposure to sunlight.

Originality/value

Many studies have been devoted to improve the substantivity of cellulosic fibre for reactive dyes. A few efforts were made to improve the light fastness. In this work, investigation will be made on a comparative study of loss of tenacity and colorfastness properties of bleached and modified (AN and MAN) jute fibres dyed with both Reactive Orange 14 and Basic Violet 14 on exposure to sunlight, washing and acid and alkali spotting. Optimum dyeing conditions will also be investigated for economic dyeing.

Details

Research Journal of Textile and Apparel, vol. 20 no. 2
Type: Research Article
ISSN: 1560-6074

Keywords

To view the access options for this content please click here
Article
Publication date: 24 July 2020

Subham Agarwal, Santonab Chakraborty and Shankar Chakraborty

Due to several unique characteristics, such as high tensile strength, low extensibility, high frictional resistance, biodegradability, eco-friendliness and cheapness, Jute

Abstract

Purpose

Due to several unique characteristics, such as high tensile strength, low extensibility, high frictional resistance, biodegradability, eco-friendliness and cheapness, Jute ranks second just after cotton with respect to its worldwide consumption and production. To overcome the difficulties of the existing Jute grading procedure, this paper aims to focus on the application of decision-making trial and evaluation laboratory (DEMATEL) and multi-attributive border approximation area comparison (MABAC) methods for evaluation of 10 Tossa Jute fiber lots based on strength, defects, root content, color, fineness and bulk density properties.

Design/methodology/approach

The DEMATEL method divides all the six physical properties of Jute fiber into cause and effect groups. The most influencing property is also identified. On the other hand, the considered Jute fiber lots are ranked using MABAC method along with the identification of the strengths and weaknesses of each of them.

Findings

This combined approach would provide a more scientific and realistic way of Jute grading and evaluation based on various properties of the considered Jute fiber lots. The positions of the superior and the inferior Jute lots perfectly match with those as identified by the earlier researchers.

Originality/value

It is concluded that the adopted combined decision-making tool can be effectively applied for grading and evaluation of other natural fibers with diverse heterogeneous physical properties.

Details

Research Journal of Textile and Apparel, vol. 24 no. 4
Type: Research Article
ISSN: 1560-6074

Keywords

To view the access options for this content please click here
Article
Publication date: 26 August 2014

Ankita Pritam Praharaj, Dibakar Behera, Tapan Kumar Bastia, Prasanta Rath and Priyabrata Mohanty

– This paper aims to prepare BisGMA (bisphenol-A glycidyldimethacrylate)/jute fibre/fly ash hybrid composites with improved mechanical and corrosive properties.

Abstract

Purpose

This paper aims to prepare BisGMA (bisphenol-A glycidyldimethacrylate)/jute fibre/fly ash hybrid composites with improved mechanical and corrosive properties.

Design/methodology/approach

BisGMA prepolymer was first synthesised using diglycidyl ether of bisphenol-A and methacrylic acid. Then 2-hydroxy ethylacrylate-treated jute fibre and sodium hydroxide-treated fly ash were incorporated in the fabrication of composites using dicumyl peroxide, cobalt naphthenate and N,N-dimethyl aniline as catalyst, accelerator and promoter, respectively. The composition of BisGMA, jute fibre and fly ash was kept constant, whereas treated and untreated jute fibre and fly ash were used alternatively.

Findings

Treatment of both jute and fly ash leads to improved mechanical properties of composites. However, treated fabric plays a dominant role compared to treated fly ash as filler. Among all the composites, the one having both treated jute fibre and treated fly ash is the most suitable composite for structural applications.

Research limitations/implications

The present investigation has come up with a hybrid composite that can be used for a wide range of applications like low-cost housing and structural projects, structural laminates, etc., as it is both corrosion- and moisture-resistant. It is also the most durable from the mechanical point of view. There is also a scope of using other fillers instead of fly ash to study the changes brought about in the mechanical properties.

Originality/value

The above composites have never been fabricated before.

Details

Pigment & Resin Technology, vol. 43 no. 5
Type: Research Article
ISSN: 0369-9420

Keywords

To view the access options for this content please click here
Article
Publication date: 10 April 2017

Md. Asadul Hoque, Md. Anwarul Kabir Bhuiya, Md. Saiduzzaman, Md. Ashadul Islam and Mubarak A. Khan

This paper aim to comparatively study of mechanical properties of gamma radiation treated raw and polyethylene glycol modified bleached jute reinforced polyester…

Abstract

Purpose

This paper aim to comparatively study of mechanical properties of gamma radiation treated raw and polyethylene glycol modified bleached jute reinforced polyester composite. The natural fiber-reinforced composite has been a wide area of research, and it is the preferred choice due to its superior physical and mechanical properties like low density, stiffness and light weight. Among several natural fibers, jute is one that has good potential as reinforcement in polymer composite. Jute fibers biodegradability, low cost and moderate mechanical properties make it as a preferable reinforcement material in the development of polymer matrix composites.

Design/methodology/approach

In the present work, raw jute fabrics-reinforced polyester composite (as RJPC) and polyethylene glycol (PEG)-modified bleached jute fabrics-reinforced polyester composite (as MBJPC) were fabricated by the heat-press molding technique at 120°C for 5 min at a pressure of 5 tons. Prior to the composite formulation, low lignin content bleached jute fabrics were chemically modified with PEG for the better compatibility of the fabrics with the polyester matrix and enhancing elongation properties. All the composites irradiated with different gamma radiation dose in the range of 2 to 14 kGy.

Findings

The irradiated composites showed highest improved of mechanical properties at the 10 kGy γ-radiation dose. However, the hard and sunlight-sensitive high lignin content γ-RJPC showed higher mechanical properties except elongation properties compared to that of low lignin content γ-MBJPC.

Originality/value

After the γ-ray irradiation, both the γ-RJPC and γ-MBJPC developed high degree of cross-linking among the polyester molecules and thereto fabrics with the consequence of significant changed of surface morphology as observed by atomic force microscopy.

Details

World Journal of Engineering, vol. 14 no. 2
Type: Research Article
ISSN: 1708-5284

Keywords

To view the access options for this content please click here
Article
Publication date: 12 September 2016

Mitsuo Ozawa, Gyu-Yong Kim, Gyeong-Choel Choe, Min-Ho Yoon, Ryoichi Sato and Keitetsu Rokugo

The behavior of high-performance concrete (HPC) at high temperatures is very complex and also affects the global behavior of heated HPC-based structures. Researchers have…

Abstract

Purpose

The behavior of high-performance concrete (HPC) at high temperatures is very complex and also affects the global behavior of heated HPC-based structures. Researchers have also reported how various types of fibers affected the mechanical properties of cement-based materials at high temperatures. This study aims to discuss the effects of high temperatures on the compressive strength and elastic modulus of HPC with polypropylene (PP) and jute fiber.

Design/methodology/approach

Adding synthetic fiber (especially the PP type) to HPC is a widely used and effective method of preventing explosive spalling. Although researchers have experimentally determined the permeability of heated PP-fiber-reinforced HPC, few studies have investigated how adding natural fiber such as jute to this type of concrete might prevent spalling. In this study, the effects of high temperatures on the compressive strength and elastic modulus of HPC with PP and jute fiber (jute fiber addition ratio: 0.075 vol.%; length: 12 mm; PP fiber addition ratio: 0.075 vol.%; length: 12 mm) were experimentally investigated.

Findings

The work was intended to clarify the influence of elevated temperatures ranging from 20°C to 500°C on the material mechanical properties of HPC at 80 MPa. HSC with jute fiber showed a compressive strength loss of about 40 per cent at 100°C before recovering to full strength between 200°C and 300°C.

Originality/value

The elastic modulus of high-strength concrete decreased by 10-40 per cent between 100°C and 300°C. At 500°C, the elastic modulus was only 30 per cent of the room temperature value. The thermal expansion strain of all specimens was 0.006 at 500°C.

Details

Journal of Structural Fire Engineering, vol. 7 no. 3
Type: Research Article
ISSN: 2040-2317

Keywords

To view the access options for this content please click here
Article
Publication date: 4 February 2021

Hemalata Jena and Abinash Panigrahi

Here, attempts have been made to explore the possible use of Marine waste as filler materials into the bio-fibre composites. Clam shell is a type of marine waste which…

Abstract

Purpose

Here, attempts have been made to explore the possible use of Marine waste as filler materials into the bio-fibre composites. Clam shell is a type of marine waste which belongs to the class of Bivalvia. It is mainly made of aragonite crystalline polymorphs. This paper aims to develop a new class of natural fibre composite in which jute fibre as reinforcement, epoxy as matrix and clam shell, as particulate microsphere filler. The study investigates the effects of different amounts of clam shell powder on the kinetics of water absorption of jute fibre-reinforced epoxy composite. Two different environmental conditions at room temperature, i.e. distilled water and seawater, are collected for this purpose. Moisture absorption reduces when clam shell is added to the jute-epoxy composite. The curve of water absorption of jute-epoxy composites with filler loading at both environmental conditions follows as Fickian behaviour.

Design/methodology/approach

Hand lay-up technique to fabricate the composite – Experimental observation

Findings

The incorporation of Clam shell filler in jute epoxy composite modified the water absorption property of the composite. Hence the present marine waste is an potential filler in jute fibre reinforced polymer composite.

Originality/value

The paper demonstrates a new class hybrid composite material which uses a marine waste as important phase in the bio-fibre-reinforced composite. It is a new work submitted for original research paper.

Details

World Journal of Engineering, vol. 18 no. 5
Type: Research Article
ISSN: 1708-5284

Keywords

To view the access options for this content please click here
Article
Publication date: 6 July 2020

Sathiyamoorthy Margabandu and Senthilkumar Subramaniam

This paper aims to deal with the influence of cutting parameters on drill thrust force, delamination and surface roughness in the drilling of laminated jute/carbon hybrid…

Abstract

Purpose

This paper aims to deal with the influence of cutting parameters on drill thrust force, delamination and surface roughness in the drilling of laminated jute/carbon hybrid composites.

Design/methodology/approach

The hybrid composites were fabricated with four layers of fabrics, which are arranged in different sequences using the hand-layup technique. Drilling experiments involved drilling of 6 mm diameter holes on the prepared composite plates using high-speed steel and solid carbide drill materials. Analysis of variance was used to find the influence, percentage contribution and significance of drilling parameters on drilling-induced damages. Scanning electron microscopy analysis was also conducted to understand the fracture behavior and surface morphology of the drilled holes.

Findings

The experimental study reveals that the most significant effect was the feed rate influenced the drill thrust force and the drill speed influenced both delamination factor and surface roughness of hybrid fiber-reinforced composites. From observations, the suggested combination for drilling jute/carbon hybrid composites is carbide drill, spindle speed of 1,750 rpm and feed of 0.03 mm/rev.

Originality/value

The new lightweight and low-cost hybrid composites were developed by hybridizing jute with carbon fabrics in the epoxy matrix with interplay arrangements. The influence of cutting speed and feed rate on delamination damage and surface roughness in the drilling of hybrid composites have been experimentally evaluated.

Details

World Journal of Engineering, vol. 17 no. 5
Type: Research Article
ISSN: 1708-5284

Keywords

To view the access options for this content please click here
Article
Publication date: 5 February 2021

Navin Kumar, Ravinderjit Singh Walia and Surjit Angra

The purpose of this study is to develop jute-glass hybrid fibre reinforced polyester-based bio-composites using an indigenously developed pultrusion set-up and to present…

Abstract

Purpose

The purpose of this study is to develop jute-glass hybrid fibre reinforced polyester-based bio-composites using an indigenously developed pultrusion set-up and to present a detailed discussion on their mechanical characterization.

Design/methodology/approach

The work was carried out to observe the hybridization effect of natural and synthetic fibres in combination with hybrid fillers loading mainly on strength and other properties. The used hybrid fillers were a combination of 9 Wt.% of carbon black%, 6 Wt.% of eggshell ash powder and 6 Wt.% of coconut coir ash powder. A lab-based developed pultrusion set-up was used to develop these hybrid GJFRP composites of 1,500 mm length. The developed composites were tested for tensile strength, compressive strength and impact strength.

Findings

The maximum tensile, compressive and impact strength obtained are 88.37 MPa, 56.13 MPa and 731.91 J/m from 9 Wt.%, 9 Wt.% and 0 Wt.% of hybrid fillers loading, respectively. Breaking energy was found maximum as 7.31 J in hybrid glass-jute hybrid fibre reinforced plastic composites with no filler loading and it was observed that filler loading was decreasing the impact strength of developed hybrid composites. Shrinkage and its variations in the diameter of the finally developed cylindrical shape composites were observed after cooling and solidification. Scanning electron microscopy was used to observe the internal cracks, bonding of fibres and resin, voids, etc.

Originality/value

Development of hybrid filler based novel eco-friendly bio-composites and its experimental investigation on the impact strength, tensile strength and compressive strength has not been attempted yet.

Details

World Journal of Engineering, vol. 18 no. 5
Type: Research Article
ISSN: 1708-5284

Keywords

1 – 10 of 245