Search results

1 – 10 of 189
Article
Publication date: 17 October 2008

Rafael R. Torrealba, G. Fernández‐López and Juan C. Grieco

The aim is to set a state‐of‐the‐art in scientific research towards the development of knee prostheses for transfemoral amputees, by reviewing the literature in the field and by…

2252

Abstract

Purpose

The aim is to set a state‐of‐the‐art in scientific research towards the development of knee prostheses for transfemoral amputees, by reviewing the literature in the field and by identifying different scientific research lines that have brought out through the years. Also, to provide the information about possible outcomes in the near future, and their links to cybernetics, given the present trends in the field.

Design/methodology/approach

Literature related to scientific research carried out up‐to‐date in the field of knee prostheses, is reviewed in scientific articles, books and electronic sources. Then, different research lines are identified from the obtained information, and finally classified as presented in this work.

Findings

Three scientific research lines regarding the development of knee prostheses were found, each one dealing with: the design of knee prostheses; the performance assessment of these prostheses; and the creation of control strategies for these prostheses which use electronics to control their performance. Also, two new possible eras of prostheses were encountered: the cybernetic era, and the electromyographic one. Considering both options, it is concluded that the cybernetic era of prostheses is likely to become real soon.

Practical implications

A useful state‐of‐the‐art review for researchers likely to be introduced in the field of development of knee prostheses and prosthetic technology in general.

Originality/value

This literature review not only sets a state‐of‐the‐art of the development of knee prostheses, but also proposes a frame of references which allows to classify the different works done in the field, as well as a better understanding of these through a clear presentation.

Details

Kybernetes, vol. 37 no. 9/10
Type: Research Article
ISSN: 0368-492X

Keywords

Article
Publication date: 5 September 2016

Xiufeng Zhang, Huiqun Fu, Xitai Wang, Guanglin Li, Rong Yang and Ying Liu

This paper aims to find a new method that could be applied to the high and mid-grade prosthesis knee joint.

Abstract

Purpose

This paper aims to find a new method that could be applied to the high and mid-grade prosthesis knee joint.

Design/methodology/approach

Based on analysis, calculation, modeling, simulation and experimental study of the motion law of knee joint, this paper not only determines the structure and parameters of the knee joint and calculates the instantaneous center but also analyzes the stance stability and completes the optimization. With the help of experimental tests (fatigue test and gait curve test), the quality and performance of the designed knee joint is verified.

Findings

The experimental results show that the gait curve of the designed knee joint is much closer to health people. The designed prosthesis knee joint, with adjustable swing speed and gait curve which are close to health limb, has a better performance when compared to the ordinary knee joint with four-bar linkage structure.

Originality/value

This paper developed a prosthesis knee joint based on a novel design method that could be applied to the “high and mid” grade prosthesis knee joint and verified its function on an amputee performed the lower amputation, which could provide theoretical support for researches and designs related to prosthesis knee joint in future.

Details

Assembly Automation, vol. 36 no. 4
Type: Research Article
ISSN: 0144-5154

Keywords

Article
Publication date: 18 October 2018

Zuhao Li, Chenyu Wang, Chen Li, Zhonghan Wang, Fan Yang, He Liu, Yanguo Qin and Jincheng Wang

This paper aims to review the latest applications in terms of three-dimensional printed (3DP) metal implants in orthopedics, and, importantly, the design of 3DP metal implants…

581

Abstract

Purpose

This paper aims to review the latest applications in terms of three-dimensional printed (3DP) metal implants in orthopedics, and, importantly, the design of 3DP metal implants through a series of cases operated at The Second Hospital of Jilin University were presented.

Design/methodology/approach

This paper is available to practitioners who are use 3DP implants in orthopedics. This review began with the deficiency of traditional prostheses and basic concepts of 3DP implants. Then, representative 3DP clinical cases were summarized and compared, and the experiences using customized prostheses and directions for future potential development are also shown.

Findings

The results obtained from the follow-up of clinical applications of 3DP implants show that the 3D designed and printed metal implants could exhibit good bone defect matching, quick and safe joint functional rehabilitation as well as saving time in surgery, which achieved high patient satisfaction collectively.

Originality/value

Single center experiences of 3DP metal implants design were shared and the detailed technical points between various regions were compared and analyzed. In conclusion, the 3DP technology is infusive and will present huge potential to reform future orthopedic practice.

Details

Rapid Prototyping Journal, vol. 24 no. 8
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 24 August 2021

Sachin Negi, Ujjwal Sagar, Vijay Kumar Nautiyal and Neeraj Sharma

This paper aims to design and analyze a controlled magnetorheological damper-based ankle-foot prosthesis prototype.

Abstract

Purpose

This paper aims to design and analyze a controlled magnetorheological damper-based ankle-foot prosthesis prototype.

Design/methodology/approach

The ankle-foot prostheses prototype is proposed using the lightweight three dimensional (3 D)-printed parts, MR damper and digital servomotor. Initially, the computer-aided design (CAD) model of the prosthetic foot, leaf spring, retention spring and the various connecting parts required to connect the pylon and damper actuator assemblies are designed using CAD software. Later, the fused deposition modeling 3 D printer-based technique prints a prosthetic foot and other connecting parts using Acrylonitrile Butadiene Styrene filament. The prototype consists of two control parts: the first part controls the MR actuator that absorbs the impacts during walking. The second part is the control of the electric actuator intended to generate the dorsiflexion and plantar flexion movements. Finally, the prototype is tested on a transtibial amputee under the supervision of a prosthetist.

Findings

The ANalysis SYStems software-based analysis has shown that the prosthetic foot has a factor of safety values between 4.7 and 8.7 for heel strike, mid-swing and toe-off; hence, it is safe from mechanical failure. The designed MR damper-based ankle-foot prosthesis prototype is tested on an amputee for a level-ground walk; he felt comfortable compared to his passive prosthesis.

Originality/value

The design of an MR damper-based prosthesis prototype offers a better dynamic range for locomotion than passive prostheses. It reduces the injuries and provides relief to the transtibial amputees.

Details

Industrial Robot: the international journal of robotics research and application, vol. 49 no. 2
Type: Research Article
ISSN: 0143-991X

Keywords

Article
Publication date: 12 August 2019

Burak Öztürk and Fehmi Erzincanli

This study aims to design a femoral component with minimum volume and maximum safety coefficient. Total knee prosthesis is a well-established therapy in arthroplasty applications…

Abstract

Purpose

This study aims to design a femoral component with minimum volume and maximum safety coefficient. Total knee prosthesis is a well-established therapy in arthroplasty applications. And in particular, with respect to damaged or weakened cartilage, new prostheses are being manufactured from bio-materials which are compatible with the human body to replace these damages. A new universal method (design method requiring optimum volume and safety [DMROVAS]) was propounded to find the optimum design parameters of tibial component.

Design/methodology/approach

The design montage was analyzed via the finite element method (FEM). To ensure the stability of the prosthesis, the maximum stress angle and magnitude of the force on the knee were taken into consideration. In the analysis process, results revealed two different maximum stress areas which were supported by case reports in the literature. Variations of maximum stress, safety factor and weight were revealed by FEM analysis, and ANOVA was used to determine the F force percentage for each of the design parameters.

Findings

Optimal design parameter levels were chosen for the individual’s minimum weight. Stress maps were constructed to optimize design choices that enabled further enhancement of the design models. The safety factor variation (SFV) of 5.73 was obtained for the volume of 39,219 mL for a region which had maximum stress. At the same time, for a maximum SFV and at the same time an average weight, values of 37,308 mL and 5.8 for volume and SFV were attained, respectively, using statistical methods.

Originality/value

This proposed optimal design development method is new and one that can be used for many biomechanical products and universal industrial designs.

Details

Engineering Computations, vol. 37 no. 2
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 13 October 2022

Smitkumar Savsani, Shamsher Singh and Harlal Singh Mali

Medical devices are undergoing rapid changes because of the increasing affordability of advanced technologies like additive manufacturing (AM) and three-dimensional scanning. New…

Abstract

Purpose

Medical devices are undergoing rapid changes because of the increasing affordability of advanced technologies like additive manufacturing (AM) and three-dimensional scanning. New avenues are available for providing solutions and comfort that were not previously conceivable. The purpose of this paper is to provide a comprehensive review of the research on developing prostheses using AM to understand the opportunities and challenges in the domain. Various studies on prosthesis development using AM are investigated to explore the scope of integration of AM in prostheses development.

Design/methodology/approach

A review of key publications from the past two decades was conducted. Integration of AM and prostheses development is reviewed from the technologies, materials and functionality point of view to identify challenges, opportunities and future scope.

Findings

AM in prostheses provides superior physical and cognitive ergonomics and reduced cost and delivery time. Patient-specific, lightweight solutions for complex designs improve comfort, functionality and clinical outcomes. Compared to existing procedures and methodologies, using AM technologies in prosthetics could benefit a large population.

Originality/value

This paper helps investigate the impact of AM and related technology in the field of prosthetics and can also be viewed as a collection of relevant medical research and findings.

Details

Rapid Prototyping Journal, vol. 29 no. 4
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 2 March 2012

Rafael R. Torrealba, José Cappelletto, Leonardo Fermín, G. Fernández‐López and Juan C. Grieco

The purpose of this paper is to generate a virtual knee angle reference to be followed by a knee prosthesis control, using an adaptive central pattern generator (CPG). Also, to…

Abstract

Purpose

The purpose of this paper is to generate a virtual knee angle reference to be followed by a knee prosthesis control, using an adaptive central pattern generator (CPG). Also, to study the feasibility of this approach to implement a continuous control strategy on the prosthesis.

Design/methodology/approach

A CPG based on amplitude controlled phase oscillators (ACPOs) to track the current percentage of gait cycle on the prosthesis is proposed. Then, the virtual knee angle reference is generated along gait cycle, by interpolation with the corresponding angle of a sound knee. The structure and coupling of the CPG, as well as the control strategy are presented.

Findings

The coupling of the CPG with real gait on the prosthesis was proven, regardless of gait speed. Also, it was found that the maximum knee angle reached during walking is proportional to gait speed. Finally, generation of virtual knee angle reference to be followed by a prosthesis is demonstrated.

Research limitations/implications

As only one event detected along gait cycle was used to update the CPG phase, the response to gait speed changes might be slow. Updating the CPG with more events remains for a future work.

Practical implications

The coupling of the CPG with real gait on the prosthesis results in a continuous gait cycle tracker, useful for any control strategy to be applied.

Originality/value

It is the first time a bio‐inspired concept as CPGs is applied to the prosthetic field. This could mean the beginning of a new era of cybernetic prostheses, which reproduce the lost limb and also the control functions of it.

Article
Publication date: 1 February 2003

Hugh Herr and Ari Wilkenfeld

A magnetorheological knee prosthesis is presented that automatically adapts knee damping to the gait of the amputee using only local sensing of knee force, torque, and position…

3773

Abstract

A magnetorheological knee prosthesis is presented that automatically adapts knee damping to the gait of the amputee using only local sensing of knee force, torque, and position. To assess the clinical effects of the user‐adaptive knee prosthesis, kinematic gait data were collected on four unilateral trans‐femoral amputees. Using the user‐adaptive knee and a conventional, non‐adaptive knee, gait kinematics were evaluated on both affected and unaffected sides. Results were compared to the kinematics of 12 age, weight and height matched normals. We find that the user‐adaptive knee successfully controls early stance damping, enabling amputee to undergo biologically‐realistic, early stance knee flexion. These results indicate that a user‐adaptive control scheme and local mechanical sensing are all that is required for amputees to walk with an increased level of biological realism compared to mechanically passive prosthetic systems.

Details

Industrial Robot: An International Journal, vol. 30 no. 1
Type: Research Article
ISSN: 0143-991X

Keywords

Article
Publication date: 1 April 1992

JAROSLAV MACKERLE

This bibliography is offered as a practical guide to published papers, conference proceedings papers and theses/dissertations on the finite element (FE) and boundary element (BE…

Abstract

This bibliography is offered as a practical guide to published papers, conference proceedings papers and theses/dissertations on the finite element (FE) and boundary element (BE) applications in different fields of biomechanics between 1976 and 1991. The aim of this paper is to help the users of FE and BE techniques to get better value from a large collection of papers on the subjects. Categories in biomechanics included in this survey are: orthopaedic mechanics, dental mechanics, cardiovascular mechanics, soft tissue mechanics, biological flow, impact injury, and other fields of applications. More than 900 references are listed.

Details

Engineering Computations, vol. 9 no. 4
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 21 March 2016

Changhui Song, Yongqiang Yang, Yunda Wang, Jia-kuo Yu and Di Wang

This paper aims to achieve rapid design and manufacturing of personalized total knee femoral component.

Abstract

Purpose

This paper aims to achieve rapid design and manufacturing of personalized total knee femoral component.

Design/methodology/approach

On the basis of a patient’s bone model, a matching personalized knee femoral component was rapidly designed with the help of computer-aided design method, then manufactured directly and rapidly by selective laser melting (SLM). Considered SLM as manufacturing technology, CoCrMo-alloyed powder that meets ASTM F75 standard is made of femoral component under optimal processing parameters. The feasibility of SLM forming through conducting experimental test of mechanical properties, surface roughness, biological corrosion resistance was analyzed.

Findings

The result showed that the tensile strength, yield strength, hardness and biological corrosion resistance of CoCrMo-alloyed personalized femoral component fulfill knee joint prosthesis standard through post-processing.

Originality/value

Traditional standardized prosthesis implantation manufacturing approach was changed by computer-aided design and personalized SLM direct manufacturing, and provided a new way for personalized implanted prosthesis to response manufacturing rapidly.

Details

Rapid Prototyping Journal, vol. 22 no. 2
Type: Research Article
ISSN: 1355-2546

Keywords

1 – 10 of 189