Search results

1 – 10 of 73
Article
Publication date: 3 February 2021

S. Sarath and P. Sam Paul

A new cutting tool is always well-defined and sharp at the onset of the metal cutting process and gradually losses these properties as the machining process advances. Similarly…

Abstract

Purpose

A new cutting tool is always well-defined and sharp at the onset of the metal cutting process and gradually losses these properties as the machining process advances. Similarly, at the beginning of the machining process, amplitude of tool vibrations is considerably low and it increases gradually and peaks at the end of the service period of the cutting tool while machining. It is significant to provide a corresponding real-time varying damping to control this chatter, which directly influences accuracy and quality of productivity. This paper aims to review the literature related to the application of smart fluid to control vibration in metal cutting and also focused on the challenges involved in the implementation of active control system during machining process.

Design/methodology/approach

Smart dampers, which are used as semi-active and active dampers in metal cutting, were reviewed and the research studies carried out in the field of the magnetorheological (MR) damper were concentrated. In smart materials, MR fluids possess some disadvantages because of their sedimentation of iron particles, leakage and slow response time. To overcome these drawbacks, new MR materials such as MR foam, MR elastomers, MR gels and MR plastomers have been recommended and suggested. This review intents to throw light into available literature which exclusively deals with controlling chatter in metal cutting with the help of MR damping methods.

Findings

Using an MR damper popularly known for its semi-active damping characteristics is very adaptable and flexible in controlling chatter by providing damping to real-time amplitudes of tool vibration. In the past, many researchers have attempted to implement MR damper in metal cutting to control vibration and were successful. Various methods with the help of MR fluid are illustrated.

Research limitations/implications

A new cutting tool is always well-defined and sharp at the onset of metal cutting process and gradually losses these properties as the machining process advances. Similarly, at the beginning of the machining process, amplitude of tool vibrations is considerably low and it increases gradually and peaks at the end of service period of cutting tool while machining. Application of MR damper along with the working methodology in metal cutting is presented, challenges met are analyzed and a scope for development is reviewed.

Practical implications

This study provides corresponding real-time varying damping to control tool vibration which directly influences accuracy and quality of productivity. Using an MR damper popularly known for its semi-active damping characteristics is very adaptable and flexible in controlling chatter by providing damping to real-time amplitudes of tool vibration.

Social implications

This study attempts to implement smart damper in metal cutting to control vibrations.

Originality/value

It is significant to provide corresponding real-time varying damping to control tool vibration which directly influences accuracy and quality of productivity.

Details

World Journal of Engineering, vol. 18 no. 3
Type: Research Article
ISSN: 1708-5284

Keywords

Article
Publication date: 24 August 2021

Sachin Negi, Ujjwal Sagar, Vijay Kumar Nautiyal and Neeraj Sharma

This paper aims to design and analyze a controlled magnetorheological damper-based ankle-foot prosthesis prototype.

Abstract

Purpose

This paper aims to design and analyze a controlled magnetorheological damper-based ankle-foot prosthesis prototype.

Design/methodology/approach

The ankle-foot prostheses prototype is proposed using the lightweight three dimensional (3 D)-printed parts, MR damper and digital servomotor. Initially, the computer-aided design (CAD) model of the prosthetic foot, leaf spring, retention spring and the various connecting parts required to connect the pylon and damper actuator assemblies are designed using CAD software. Later, the fused deposition modeling 3 D printer-based technique prints a prosthetic foot and other connecting parts using Acrylonitrile Butadiene Styrene filament. The prototype consists of two control parts: the first part controls the MR actuator that absorbs the impacts during walking. The second part is the control of the electric actuator intended to generate the dorsiflexion and plantar flexion movements. Finally, the prototype is tested on a transtibial amputee under the supervision of a prosthetist.

Findings

The ANalysis SYStems software-based analysis has shown that the prosthetic foot has a factor of safety values between 4.7 and 8.7 for heel strike, mid-swing and toe-off; hence, it is safe from mechanical failure. The designed MR damper-based ankle-foot prosthesis prototype is tested on an amputee for a level-ground walk; he felt comfortable compared to his passive prosthesis.

Originality/value

The design of an MR damper-based prosthesis prototype offers a better dynamic range for locomotion than passive prostheses. It reduces the injuries and provides relief to the transtibial amputees.

Details

Industrial Robot: the international journal of robotics research and application, vol. 49 no. 2
Type: Research Article
ISSN: 0143-991X

Keywords

Article
Publication date: 26 September 2023

Jiabao Pan, Rui Li and Ao Wang

The adverse effects of temperature on the lubricating properties of nano magnetorheological grease are reduced by applying of a magnetic field.

Abstract

Purpose

The adverse effects of temperature on the lubricating properties of nano magnetorheological grease are reduced by applying of a magnetic field.

Design/methodology/approach

Nano magnetorheological grease was prepared via a thermal water bath with stirring. The lubricating properties of the grease were investigated at different temperatures. Then the lubricity of the prepared nano magnetorheological grease was investigated under the effect of thermomagnetic coupling.

Findings

As the temperature rises, the coefficient of friction of grease lubrication gradually increases, surface wear gradually increases and lubrication performance gradually decreases. Compared with grease, magnetorheological grease has a decreased coefficient of friction and enhanced lubrication effect under the action of a magnetic field at different temperatures.

Originality/value

A lubrication method using a magnetic field to reduce the effect of temperature is established, thereby providing new ideas for lubrication design under a wide range of temperature conditions.

Details

Industrial Lubrication and Tribology, vol. 75 no. 9
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 6 November 2019

Mohamed Benadda, Ahmed Bouzidane, Marc Thomas and Raynald Guilbault

This paper aims to propose a new hydrostatic squeeze film damper compensated with electrorheological valve restrictors to control the nonlinear dynamic behavior of a rigid rotor…

Abstract

Purpose

This paper aims to propose a new hydrostatic squeeze film damper compensated with electrorheological valve restrictors to control the nonlinear dynamic behavior of a rigid rotor caused by high unbalance eccentricity ratio. To investigate the effect of electrorheological valve restrictors on the dynamic behavior of a rigid rotor, a nonlinear model is developed and presented.

Design/methodology/approach

The nonlinear results are compared with those obtained from a linear approach. The results show good agreement between the linear and nonlinear methods when the unbalanced force is small. The effects of unbalance eccentricity ratio and electric field on the vibration response and the bearing transmitted force are investigated using the nonlinear models.

Findings

The results of simulation performed that the harmonics generated by high unbalance eccentricities can be reduced by using hydrostatic squeeze film damper compensated with electrorheological valve restrictors.

Originality/value

The numerical results demonstrate that this type of smart hydrostatic squeeze film damper provides to hydrostatic designers a new bearing configuration suitable to control rotor vibrations and bearing transmitted forces, especially for high speed.

Article
Publication date: 26 June 2024

Tuan Anh Nguyen, Thi Thu Huong Tran and Thang Binh Hoang

This paper aims to design a PD controller for an active suspension system to improve the car’s moving smoothness.

Abstract

Purpose

This paper aims to design a PD controller for an active suspension system to improve the car’s moving smoothness.

Design/methodology/approach

The controller parameters are optimized by an in-loop genetic algorithm (iL-GA). Unlike previous studies that only used conventional GAs to tune coefficients for the controller, the iL-GA designed in this paper provides outstanding efficiency when determining the optimal value range for the system. The optimal value range of parameters is determined by the in-loop algorithm based on criteria related to systematic errors. The optimal values are then calculated by the GA based on this range instead of an uncertain one.

Findings

Simulation results show that vehicle body acceleration and displacement values are significantly reduced when using the active suspension system compared to the conventional passive suspension system. The phase difference phenomenon does not occur in the iL-GA situation. In addition, the frequency domain investigation also shows the system’s stability when using iL-GA instead of conventional GA.

Originality/value

To the best of the authors’ knowledge, this is a new application that provides positive effects to the suspension controller. This algorithm can be applied to tune coefficients for direct controllers in the future.

Details

World Journal of Engineering, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1708-5284

Keywords

Article
Publication date: 1 February 2003

Hugh Herr and Ari Wilkenfeld

A magnetorheological knee prosthesis is presented that automatically adapts knee damping to the gait of the amputee using only local sensing of knee force, torque, and position…

3795

Abstract

A magnetorheological knee prosthesis is presented that automatically adapts knee damping to the gait of the amputee using only local sensing of knee force, torque, and position. To assess the clinical effects of the user‐adaptive knee prosthesis, kinematic gait data were collected on four unilateral trans‐femoral amputees. Using the user‐adaptive knee and a conventional, non‐adaptive knee, gait kinematics were evaluated on both affected and unaffected sides. Results were compared to the kinematics of 12 age, weight and height matched normals. We find that the user‐adaptive knee successfully controls early stance damping, enabling amputee to undergo biologically‐realistic, early stance knee flexion. These results indicate that a user‐adaptive control scheme and local mechanical sensing are all that is required for amputees to walk with an increased level of biological realism compared to mechanically passive prosthetic systems.

Details

Industrial Robot: An International Journal, vol. 30 no. 1
Type: Research Article
ISSN: 0143-991X

Keywords

Article
Publication date: 11 June 2020

Mohd Sabirin Rahmat, Khisbullah Hudha, Zulkiffli Abd Kadir, Noor Hafizah Amer, Muhammad Luqman Hakim Abd Rahman and Shohaimi Abdullah

The objective of this paper is to develop a fast modelling technique for predicting magneto-rheological fluid damper behaviour under impact loading applications.

Abstract

Purpose

The objective of this paper is to develop a fast modelling technique for predicting magneto-rheological fluid damper behaviour under impact loading applications.

Design/methodology/approach

The adaptive neuro-fuzzy inference system (ANFIS) technique was adopted to predict the behaviour of a magneto-rheological fluid (MRF) damper through experimental characterisation data. In this study, an MRF damper manufactured by Lord Corporation was used for characterisation using an impact pendulum test rig. The experimental characterisation was carried out with various impact energies and constant input currents applied to the MRF damper.

Findings

This research provided a fast modelling technique with relatively less error in predicting MRF damper behaviour for the development of control strategies. Accordingly, the ANFIS model was able to predict MRF damper behaviour under impact loading and showed better performance than the modified Bouc–Wen model.

Research limitations/implications

This study only focused on modelling technique for a single type of MRF damper used for impact loading applications. It is possible for other applications, such as cyclic loading, random loadings and system identification, to be studied in future experiments.

Original/Value

Future researchers could apply the ANFIS model as an actuator model for the development of control strategies and analyse the control performance. The model also can be replicated in other industries with minor modifications to suit different needs.

Details

Multidiscipline Modeling in Materials and Structures, vol. 16 no. 6
Type: Research Article
ISSN: 1573-6105

Keywords

Article
Publication date: 7 September 2021

Ming Huang, Zhiqiang Zhang, Peizi Wei, Fei Liu and Youliang Ding

In order to make sure of the safety of a long-span suspension bridge under earthquake action, this paper aims to study the traveling wave effect of the bridge under multi-support…

137

Abstract

Purpose

In order to make sure of the safety of a long-span suspension bridge under earthquake action, this paper aims to study the traveling wave effect of the bridge under multi-support excitation and optimize the semi-active control schemes based on magneto-rheological (MR) dampers considering reference index as well as economical efficiency.

Design/methodology/approach

The finite element model of the long-span suspension bridge is established in MATLAB and ANSYS software, which includes different input currents and semi-active control conditions. Six apparent wave velocities are used to conduct non-linear time history analysis in order to consider the seismic response influence in primary members under traveling wave effect. The parameters α and β, which are key parameters of classical linear optimal control algorithm, are optimized and analyzed taking into account five different combinations to obtain the optimal control scheme.

Findings

When the apparent wave velocity is relatively small, the influence on the structural response is oscillatory. Along with the increase of the apparent wave velocity, the structural response is gradually approaching the response under uniform excitation. Semi-active control strategy based on MR dampers not only restrains the top displacement of main towers and relative displacement between towers and girders, but also affects the control effect of internal forces. For classical linear optimal control algorithm, the values of two parameters (α and β) are 100 and 8 × 10–6 considering the optimal control effect and economical efficiency.

Originality/value

The emphasis of this study is the traveling wave effect of the triple-tower suspension bridge under multi-support excitation. Meanwhile, the optimized parameters of semi-active control schemes using MR dampers have been obtained, providing relevant references in improving the seismic performance of three-tower suspension bridge.

Details

International Journal of Structural Integrity, vol. 12 no. 5
Type: Research Article
ISSN: 1757-9864

Keywords

Article
Publication date: 7 December 2023

Mohammed Jazeel, Sam Paul P., Lawrance Gunaraj and Hemalatha G.

Nowadays, in building structures, dampers are connected to the building structure to reduce the damages caused by seismicity in addition to enhancing structural stability, and to…

47

Abstract

Purpose

Nowadays, in building structures, dampers are connected to the building structure to reduce the damages caused by seismicity in addition to enhancing structural stability, and to connect dampers with the structure, joints are used. In this paper, three different configurations of double-lap joints were designed, developed and tested.

Design/methodology/approach

This paper aims to analyze three different categories of double-lap single-bolted joints that are used in connecting dampers with concrete and steel frame structures. These joints were designed and tested using computational, numerical and experimental methods. The studies were conducted to examine the reactions of the joints during loading conditions and to select the best joints for the structures that allow easy maintenance of the dampers and also withstand structural deformation when the damper is active during seismicity. Also, a computational analysis was performed on the designed joints integrated with the M25 concrete beam column junction. In this investigation, experimental study was carried out in addition to numerical and computational methods during cyclic load.

Findings

It was observed from the result that during deformation the double-base multiplate lap joint was suitable for buildings because the deformations on the joint base was negligible when compared with other joints. From the computational analysis, it was revealed that the three double joints while integrated with the beam column junction of M25 grade concrete structure, the damages induced by the double-base multiplate joint was negligible when compared with other two joints used in this study.

Originality/value

To prevent the collapse of the building during seismicity, dampers are used and further connecting the damper with the building structures, joints are used. In this paper, three double-lap joints in different design configuration were studied using computational, numerical and experimental techniques.

Details

World Journal of Engineering, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1708-5284

Keywords

Article
Publication date: 5 February 2018

Erming Ding, Fangwei Xie, Heng Dai, Qingsong Gao, Jin Zhang, Yixian Feng and Hongtuo Liu

In order to improve the ride comfort of vehicle suspension, this paper first proposed a shock absorber with four-stage adjustable damping forces. The purpose of this paper is to…

Abstract

Purpose

In order to improve the ride comfort of vehicle suspension, this paper first proposed a shock absorber with four-stage adjustable damping forces. The purpose of this paper is to validate its modeling and characteristics, indicator diagrams and velocity diagrams, which are the main research points.

Design/methodology/approach

In order to validate the fluid flow modeling, a series of mathematical modeling is established and solved by using Matlab/Simulink. An experiment rig based on electro-hydraulic loading servo system is designed to test the prototype. Finally, indicator diagram and velocity diagram are obtained and compared both in simulation and experiments.

Findings

Results indicate that at the same damping position, damping force will increase with the rise of rod’s velocity: if the rod’s velocity is fixed, the damping force changes apparently by altering the damping position. The shock absorber is softest at damping position 1, and it is hardest at damping position 4; although there is no any badly empty stroke and skewness in indicator diagram by simulation, a temporary empty stroke happens at maximum displacement of piston rob, both in rebound and compression strokes.

Research limitations/implications

Compared with results of the simulation and experiments, the design of a four-stage damping adjustable shock absorber (FDASA) is validated correctly in application, and may improve the overall dynamic performance of vehicle.

Originality/value

This paper is mainly focused on the design and testing of an FDASA, which may obtain four-stages damping characteristics, that totally has a vital importance to improve the performance of vehicle suspension.

Details

International Journal of Structural Integrity, vol. 9 no. 1
Type: Research Article
ISSN: 1757-9864

Keywords

1 – 10 of 73