Search results

1 – 10 of over 3000
Article
Publication date: 2 February 2015

Peter K. Bernasko, Sabuj Mallik and G. Takyi

The purpose of this paper is to study the effect of intermetallic compound (IMC) layer thickness on the shear strength of surface-mount component 1206 chip resistor solder joints

1929

Abstract

Purpose

The purpose of this paper is to study the effect of intermetallic compound (IMC) layer thickness on the shear strength of surface-mount component 1206 chip resistor solder joints.

Design/methodology/approach

To evaluate the shear strength and IMC thickness of the 1206 chip resistor solder joints, the test vehicles were conventionally reflowed for 480 seconds at a peak temperature of 240°C at different isothermal ageing times of 100, 200 and 300 hours. A cross-sectional study was conducted on the reflowed and aged 1206 chip resistor solder joints. The shear strength of the solder joints aged at 100, 200 and 300 hours was measured using a shear tester (Dage-4000PXY bond tester).

Findings

It was found that the growth of IMC layer thickness increases as the ageing time increases at a constant temperature of 175°C, which resulted in a reduction of solder joint strength due to its brittle nature. It was also found that the shear strength of the reflowed 1206 chip resistor solder joint was higher than the aged joints. Moreover, it was revealed that the shear strength of the 1206 resistor solder joints aged at 100, 200 and 300 hours was influenced by the ageing reaction times. The results also indicate that an increase in ageing time and temperature does not have much influence on the formation and growth of Kirkendall voids.

Research limitations/implications

A proper correlation between shear strength and fracture mode is required.

Practical implications

The IMC thickness can be used to predict the shear strength of the component/printed circuit board pad solder joint.

Originality/value

The shear strength of the 1206 chip resistor solder joint is a function of ageing time and temperature (°C). Therefore, it is vital to consider the shear strength of the surface-mount chip component in high-temperature electronics.

Details

Soldering & Surface Mount Technology, vol. 27 no. 1
Type: Research Article
ISSN: 0954-0911

Keywords

Article
Publication date: 18 February 2019

Peng Yao, Xiaoyan Li, Xu Han and Liufeng Xu

This study aims to analyze the shear strength and fracture mechanism of full Cu-Sn IMCs joints with different Cu3Sn proportion and joints with the conventional interfacial…

Abstract

Purpose

This study aims to analyze the shear strength and fracture mechanism of full Cu-Sn IMCs joints with different Cu3Sn proportion and joints with the conventional interfacial structure in electronic packaging.

Design/methodology/approach

The Cu-Sn IMCs joints with different Cu3Sn proportion were fabricated through soldering Cu-6 μm Sn-Cu sandwich structure under the extended soldering time and suitable pressure. The joints of conventional interfacial structure were fabricated through soldering Cu-100 μm Sn-Cu sandwich structure. After the shear test was conducted, the fracture mechanism of different joints was studied through observing the cross-sectional fracture morphology and top-view fracture morphology of sheared joints.

Findings

The strength of joints with the conventional interfacial structure was 26.6 MPa, while the strength of full Cu-Sn IMCs joints with 46.7, 60.6, 76.7 and 100 per cent Cu3Sn was, respectively, 33.5, 39.7, 45.7 and 57.9 MPa. The detailed reason for the strength of joints showing such regularity was proposed. For the joint of conventional interfacial structure, the microvoids accumulation fracture happened within the Sn solder. However, for the full Cu-Sn IMCs joint with 46.7 per cent Cu3Sn, the cleavage fracture happened within the Cu6Sn5. As the Cu3Sn proportion increased to 60.6 per cent, the inter-granular fracture, which resulted in the interfacial delamination of Cu3Sn and Cu6Sn5, occurred along the Cu3Sn/Cu6Sn5 interface, while the cleavage fracture happened within the Cu6Sn5. Then, with the Cu3Sn proportion increasing to 76.7 per cent, the cleavage fracture happened within the Cu6Sn5, while the transgranular fracture happened within the Cu3Sn. The inter-granular fracture, which led to the interfacial delamination of Cu3Sn and Cu, happened along the Cu/Cu3Sn interface. For the full Cu3Sn joint, the cleavage fracture happened within the Cu3Sn.

Originality/value

The shear strength and fracture mechanism of full Cu-Sn IMCs joints was systematically studied. A direct comparison regarding the shear strength and fracture mechanism between the full Cu-Sn IMCs joints and joints with the conventional interfacial structure was conducted.

Details

Soldering & Surface Mount Technology, vol. 31 no. 1
Type: Research Article
ISSN: 0954-0911

Keywords

Article
Publication date: 28 April 2020

Mohd Najib Ali Mokhtar, M.Z. Abdullah, Abdullah Aziz Saad and Fakhrozi Cheani

This paper focuses on the reliability of the solder joint after the self-alignment phenomenon during reflow soldering. The aim of this study is to analyse the joint quality of the…

131

Abstract

Purpose

This paper focuses on the reliability of the solder joint after the self-alignment phenomenon during reflow soldering. The aim of this study is to analyse the joint quality of the self-alignment assemblies of SnAg alloy solder joints with varying silver content.

Design/methodology/approach

The shear strength assessment was conducted in accordance with the JIS Z3 198-7 standard. The standard visual inspection of IPC-A-610G was also performed to inspect the self-alignment features of the solder joint samples. Statistical analysis was conducted to determine the probabilistic relationship of shear strength of the misalignment components.

Findings

The results from the mechanical reliability study indicate that there were decreasing trends in the shear strength value as misalignment offset increased. For shift mode configuration in the range of 0-300 µm, the resulting chip assembly inspection after the reflow process was in line with the IPC-A-610G standard. The statistical analysis shows that the solder type variation was insignificant to the shear strength of the chip resistor. The study concluded that the fracture occurred partially in the termination metallization at the lower part of the chip resistor. The copper content of the joint on that area shows that the crack occurred in the solder joint, and high silver content on the selected zone indicated that the fracture happened partially in the termination structure, as the termination structure of the lead-free chip resistor consists of an inner layer of silver and an outer layer of tin.

Practical implications

This study’s findings provide valuable guidelines and references to engineers and integrated circuit designers during the reflow soldering process in the microelectronics industry.

Originality/value

Studies on the effect of component misalignment on joint mechanical reliability are still limited, and studies on solder joint reliability involving the effect of differing contents of silver on varying chip component offset are rarely reported. Thus, this study is important to effectively bridge the research gap and yield appropriate guidelines in the potential industry.

Details

Soldering & Surface Mount Technology, vol. 33 no. 1
Type: Research Article
ISSN: 0954-0911

Keywords

Article
Publication date: 18 March 2020

Yasmin Murad, Haneen Abdel-Jabar, Amjad Diab and Husam Abu Hajar

The purpose of this study is to develop two empirical models that predict the shear strength of exterior beam-column joints exposed to monotonic and cyclic loading using Gene…

Abstract

Purpose

The purpose of this study is to develop two empirical models that predict the shear strength of exterior beam-column joints exposed to monotonic and cyclic loading using Gene expression programming (GEP).

Design/methodology/approach

The GEP model developed for the monotonic loading case is trained and validated using 81 data test points and that for cyclic loading case is trained and validated using 159 data test points that collected from different 9 and 39 experimental programs, respectively. The parameters that are selected to develop the cyclic GEP model are concrete compressive strength, joint aspect ratio, column axial load and joint transverse reinforcement. The monotonic GEP model is developed using concrete compressive strength, column depth, joint width and column axial load.

Findings

GEP models are proposed in this paper to predict the joint shear strength of beam-column joints under cyclic and monotonic loading. The predicted results obtained using the GEP models are compared to those calculated using the ACI-352 code formulations. A sensitivity analysis is also performed to further validate the GEP models.

Originality/value

The proposed GEP models provide an accurate prediction for joint shear strength of beam-column joints under cyclic and monotonic loading that is more fitting to the experimental database than the ACI-352 predictions where the GEP models have higher R2 value than the code formulations.

Details

Engineering Computations, vol. 37 no. 7
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 4 June 2024

Fengjiang Wang, Dapeng Yang and Guoqing Yin

This paper aims to focus on the reliability of Sn15Bi–xAg and Sn15Bi–xCu solder joints during isothermal aging.

Abstract

Purpose

This paper aims to focus on the reliability of Sn15Bi–xAg and Sn15Bi–xCu solder joints during isothermal aging.

Design/methodology/approach

The effects of Ag or Cu additions on the microstructure, interfacial metallic compound layer and shear strength of Sn–15Bi (Sn15Bi) based solder joints during were investigated. The effects of Ag or Cu additions on the microstructure and tensile properties of Sn15Bi-based bulk solders were also investigated to provide a comprehensive analysis. The interfacial morphology and microstructure were observed by scanning electron microscopy and the composition in the structure was examined by energy dispersive spectrometer. The shear tests were carried out on the as-soldered and as-aged joints using a ball shear tester.

Findings

The results revealed that by adding Ag or Cu, the microstructure of Sn15Bi solder can be refined. Ag addition increased the tensile strength of Sn15Bi solder but had little effect on elongation. However, Cu addition decreased the tensile strength and elongation of Sn15Bi solder. For solder joints, Ag addition increased the shear strength and toughness of Sn15Bi/Cu joints but Cu addition decreased the shear strength and toughness of Sn15Bi/Cu joints.

Originality/value

The authors can potentially provide a replacement for Sn40Pb traditional solder with Sn15Bi solder by alloying Ag or Cu due to its lower cost and similar melting point as Sn–Pb solder.

Details

Soldering & Surface Mount Technology, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0954-0911

Keywords

Article
Publication date: 1 October 2006

Jianbiao Pan, Brian J. Toleno, Tzu‐Chien Chou and Wesley J. Dee

The purpose of this work is to study the effect of the reflow peak temperature and time above liquidus on both SnPb and SnAgCu solder joint shear strength.

1026

Abstract

Purpose

The purpose of this work is to study the effect of the reflow peak temperature and time above liquidus on both SnPb and SnAgCu solder joint shear strength.

Design/methodology/approach

Nine reflow profiles for Sn3.0Ag0.5Cu and nine reflow profiles for Sn37Pb have been developed with three levels of peak temperature (230°C, 240°C, and 250°C for Sn3.0Ag0.5Cu; and 195°C, 205°C, and 215°C for Sn37Pb) and three levels of time above solder liquidus temperature (30, 60, and 90 s). The shear force data of four different sizes of chip resistors (1206, 0805, 0603, and 0402) are compared across the different profiles. The shear forces for the resistors were measured after assembly. The fracture interfaces were inspected using scanning electron microscopy with energy dispersive spectroscopy in order to determine the failure mode and failure surface morphology.

Findings

The results show that the effects of the peak temperature and the time above solder liquidus temperature are not consistent between different component sizes and between Sn37Pb and Sn3.0Ag0.5Cu solder. The shear force of SnPb solder joints is higher than that of Sn3.0Ag0.5Cu solder joints because the wetting of SnPb is better than that of SnAgCu.

Research limitations/implications

This study finds that fracture occurred partially in the termination metallization and partially in the bulk solder joint. To eliminate the effect of the termination metallization, future research is recommended to conduct the same study on solder joints without component attachment.

Practical implications

The shear strength of both SnPb and SnAgCu solder joints is equal to or higher than that of the termination metallization for the components tested.

Originality/value

Fracture was observed to occur partially in the termination metallization (Ag layer) and partially in the bulk solder joint. Therefore, it is essential to inspect the fracture interfaces when comparing solder joint shear strength.

Details

Soldering & Surface Mount Technology, vol. 18 no. 4
Type: Research Article
ISSN: 0954-0911

Keywords

Article
Publication date: 9 May 2019

Qiaoran Zhang, Abdelhafid Zehri, Jiawen Liu, Wei Ke, Shirong Huang, Martí Gutierrez Latorre, Nan Wang, Xiuzhen Lu, Cheng Zhou, Weijuan Xia, Yanpei Wu, Lilei Ye and Johan Liu

This study aims to develop a bimodal nano-silver paste with improved mechanical property and reliability. Silicon carbide (SiC) particles coated with Ag were introduced in…

Abstract

Purpose

This study aims to develop a bimodal nano-silver paste with improved mechanical property and reliability. Silicon carbide (SiC) particles coated with Ag were introduced in nano-silver paste to improve bonding strength between SiC and Ag particles and enhance high-temperature stability of bimodal nano-silver paste. The effect of sintering parameters such as sintering temperature, sintering time and the proportion of SiC particles on mechanical property and reliability of sintered bimodal nano-silver structure were investigated.

Design/methodology/approach

Sandwich structures consist of dummy chips and copper substrates with nickel and silver coating bonded by nano-silver paste were designed for shear testing. Shear strength testing was conducted to study the influence of SiC particles proportions on the mechanical property of sintered nano-silver joints. The reliability of the bimodal nano-silver paste was evaluated experimentally by means of shear test for samples subjected to thermal aging test at 150°C and humidity and temperature testing at 85°C and 85 per cent RH, respectively.

Findings

Shear strength was enhanced obviously with the increase of sintering temperature and sintering time. The maximum shear strength was achieved for nano-silver paste sintered at 260°C for 10 min. There was a negative correlation between the proportion of SiC particles and shear strength. After thermal aging testing and humidity and temperature testing for 240 h, the shear strength decreased a little. High-temperature stability and high-hydrothermal stability were improved by the addition of SiC particles.

Originality/value

Submicron-scale SiC particles coated with Ag were used as alternative materials to replace part of nano-silver particles to prepare bimodal nano-silver paste due to its high thermal conductivity and excellent mechanical property.

Details

Soldering & Surface Mount Technology, vol. 31 no. 4
Type: Research Article
ISSN: 0954-0911

Keywords

Article
Publication date: 31 December 2019

Isam Tareq Abdullah, Sabah Khammass Hussein and Abbas Khammas Hussein

The purpose of this paper is to join sheets of an aluminium alloy together with pre-holed carbon steel via friction spot technique.

Abstract

Purpose

The purpose of this paper is to join sheets of an aluminium alloy together with pre-holed carbon steel via friction spot technique.

Design/methodology/approach

An AISI 1006 steel sheet was a pre-holed with a 4.8 mm diameter and put under AA5052 sheet with a lap joint configuration. The joining process was carried out by extruding the aluminium through the steel hole using a rotating tool of 10 mm diameter. Furthermore, three process parameters (pre-heating time, rotating speed and plunging depth of the tool) with three values for each parameter were used to study their effects on the joints quality. In order to join samples, nine experiments were designed according to a Taguchi method. Shear strength, microstructure and X-ray diffraction tests of the joint were carried out.

Findings

The joining mechanism occurred by a mechanical interlock of the extruded aluminium with the inner surface of the steel hole. The tool plunging depth had a significant effect on the shear strength of the joint. The shear strength of two joints exceeded the shear strength of the wrought material (AA5052). All samples failed with two modes: pull-out and shearing of the extruded aluminium.

Originality/value

For the first time, the extrusion technique was used to join AA5052 sheet together with pre-holed carbon steel, with a perfect joint efficiency.

Details

International Journal of Structural Integrity, vol. 11 no. 6
Type: Research Article
ISSN: 1757-9864

Keywords

Article
Publication date: 31 May 2024

Danqing Fang, Chengjin Wu, Yansong Tan, Xin Li, Lilan Gao, Chunqiu Zhang and Bingjie Zhao

The paper aims to study the effect of sintering temperature on the microstructure, shear strength and ratcheting fatigue life of nanosilver sintered lap shear joint. In addition…

Abstract

Purpose

The paper aims to study the effect of sintering temperature on the microstructure, shear strength and ratcheting fatigue life of nanosilver sintered lap shear joint. In addition, the Gerber model is used to predict the ratcheting fatigue lives of nanosilver sintered lap shear joints at different sintering temperatures.

Design/methodology/approach

In this paper, the nanosilver sintered lap shear joints were prepared at three sintering temperatures of 250 °C, 280 °C and 310 °C. The bonding quality was characterized by scanning electron microscopy, X-ray diffraction, transmission electron microscope and shear tests, and the long-term reliability was studied by conducting ratcheting fatigue tests. In addition, three modified models based on Basquin equation were used to predict the ratcheting fatigue life of nanosilver sintered lap shear joint and their accuracies were evaluated.

Findings

When the sintering temperature is 250°C, the nanosilver sintered lap shear joint shows the porosity of 22.9 ± 1.6 %, and the shear strength of 22.3 ± 2.4 MPa. Raising the sintering temperature enhances silver crystallite size, strengthens sintering necks, thus improves shear strength and ratcheting fatigue life in joints. In addition, the ratcheting fatigue lives of the joints sintered at different temperatures are effectively predicted by three equivalent force models, and the Gerber model shows the highest life prediction accuracy.

Research limitations/implications

The sintered silver bondline is suffering a complex stress state. The study only takes the shear stress into consideration. The tensile stress and the combination of shear stress and tensile stress can to be considered in the future study.

Practical implications

The paper provides the experimental and theoretical support for robust bonding and long-term reliability of sintered silver structure.

Social implications

The introduced model can predict the ratcheting fatigue lives of the joints sintered at different temperatures, which shows a potential in engineering applications.

Originality/value

The study revealed the relationship between the sintering temperature and the microstructure, the shear strength and the ratcheting fatigue life of the joint. In addition, the Gerber model can predict the ratcheting fatigue life accurately at different sintering temperatures.

Details

Soldering & Surface Mount Technology, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0954-0911

Keywords

Article
Publication date: 4 September 2023

Shahe Liang, Wenkun Liu and Zhongfan Chen

Recycled concrete is an economical and environmentally friendly green material. The shear performance of recycled concrete load-bearing masonry is studied, which is great of…

Abstract

Purpose

Recycled concrete is an economical and environmentally friendly green material. The shear performance of recycled concrete load-bearing masonry is studied, which is great of significance for its promotion and application and also has great significance for the sustainable development of energy materials.

Design/methodology/approach

In total, 30 new load-bearing block masonry samples of self-insulating recycled concrete are subjected to pure shear tests, and 42 samples are tested subjected to shear-compression composite shear tests. According to the axial design compression ratio, the test is separated into seven working conditions (0.1–0.8).

Findings

According to the test results, the recommended formula for the average shear strength along the joint section of recycled concrete block masonry is given, which can be used as a reference for engineering design. The measured shear-compression correlation curves of recycled concrete block masonry are drawn, and the proposed limits of three shear-compression failure characteristics are given. The recommended formula for the average shear strength of masonry under the theory of shear-friction with variable friction coefficient is given, providing a valuable reference for the formulation of relevant specifications and practical engineering design.

Originality/value

Simulated elastoplastic analysis and finite element modeling on the specimens are performed to verify the test results.

Details

International Journal of Structural Integrity, vol. 14 no. 5
Type: Research Article
ISSN: 1757-9864

Keywords

1 – 10 of over 3000