Search results

1 – 10 of over 4000
Article
Publication date: 1 March 2023

Yushan Gao, Wei Jiang and Shihui Huo

The fracture mechanism of S-07 steel was investigated by observing the fracture surface of the specimens with scanning electron microscope (SEM). Furthermore, the overall…

Abstract

Purpose

The fracture mechanism of S-07 steel was investigated by observing the fracture surface of the specimens with scanning electron microscope (SEM). Furthermore, the overall elastic–plastic behaviors and the stress state evolution during the loading procedure of all specimens were simulated by FE analysis to obtain the local strain at crack nucleated location and the average triaxiality of each type of specimen.

Design/methodology/approach

Three types of tests under various stress states were performed to study the ductile fracture characteristics of S-07 high strength steel in quasi-static condition.

Findings

Under tensile and torsion loading conditions, S-07 steel exhibits two distinctive rupture mechanisms: the growth and internal necking of voids governs the rupture mechanism in tension dominated loading mode, while the change of void shape and internal shearing in the ligaments between voids dominants for shear conditions.

Originality/value

The failure criterion for S-07 steel considering the influence of the triaxial stress state was established.

Details

Multidiscipline Modeling in Materials and Structures, vol. 19 no. 3
Type: Research Article
ISSN: 1573-6105

Keywords

Article
Publication date: 27 January 2023

Yongliang Wang and Nana Liu

The unstable dynamic propagation of multistage hydrofracturing fractures leads to uneven development of the fracture network and research on the mechanism controlling this…

Abstract

Purpose

The unstable dynamic propagation of multistage hydrofracturing fractures leads to uneven development of the fracture network and research on the mechanism controlling this phenomenon indicates that the stress shadow effects around the fractures are the main mechanism causing this behaviour. Further studies and simulations of the stress shadow effects are necessary to understand the controlling mechanism and evaluate the fracturing effect.

Design/methodology/approach

In the process of stress-dependent unstable dynamic propagation of fractures, there are both continuous stress fields and discontinuous fractures; therefore, in order to study the stress-dependent unstable dynamic propagation of multistage fracture networks, a series of continuum-discontinuum numerical methods and models are reviewed, including the well-developed extended finite element method, displacement discontinuity method, boundary element method and finite element-discrete element method.

Findings

The superposition of the surrounding stress field during fracture propagation causes different degrees of stress shadow effects between fractures and the main controlling factors of stress shadow effects are fracture initiation sequence, perforation cluster spacing and well spacing. The perforation cluster spacing varies with the initiation sequence, resulting in different stress shadow effects between fractures; for example, the smaller the perforation cluster spacing and well spacing are, the stronger the stress shadow effects are and the more seriously the fracture propagation inhibition arises. Moreover, as the spacing of perforation clusters and well spacing increases, the stress shadow effects decrease and the fracture propagation follows an almost straight pattern. In addition, the computed results of the dynamic distribution of stress-dependent unstable dynamic propagation of fractures under different stress fields are summarised.

Originality/value

A state-of-art review of stress shadow effects and continuum-discontinuum methods for stress-dependent unstable dynamic propagation of multiple hydraulic fractures are well summarized and analysed. This paper can provide a reference for those engaged in the research of unstable dynamic propagation of multiple hydraulic structures and have a comprehensive grasp of the research in this field.

Details

Engineering Computations, vol. 40 no. 1
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 1 December 1998

J.E. Bolander, H. Hikosaka and W.‐J. He

A planar lattice network of beam elements is used to study the mechanisms of fracture in cement‐based materials. Beam properties are controlled by a nonlinear elastic fracture law…

Abstract

A planar lattice network of beam elements is used to study the mechanisms of fracture in cement‐based materials. Beam properties are controlled by a nonlinear elastic fracture law which roughly accounts for three‐dimensionality of the material and fracture process. Special attention is given to modeling toughening mechanisms associated with aggregate‐matrix interface failure. The distributions of damage and fracture energy consumption are resolved at the material mesoscale and are shown to depend on strain gradient. An adaptive remeshing procedure is used to reduce computational cost and enable analyses of specimens of significantly differing scale, while keeping the lattice density constant. Larger process zones, higher specific fracture energies, and lower specific peak loads are obtained with increasing specimen size, in agreement with published test results. These computations provide information useful in developing refined macromodels for engineering analyses.

Details

Engineering Computations, vol. 15 no. 8
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 5 December 2016

Samarth D. Patwardhan, Fatemeh Famoori and Suresh Kumar Govindarajan

This paper aims to review the quad-porosity shale system from a production standpoint. Understanding the complex but coupled flow mechanisms in such reservoirs is essential to…

Abstract

Purpose

This paper aims to review the quad-porosity shale system from a production standpoint. Understanding the complex but coupled flow mechanisms in such reservoirs is essential to design appropriate completions and further, optimally produce them. Dual-porosity and dual permeability models are most commonly used to describe a typical shale gas reservoir.

Design/methodology/approach

Characterization of such reservoirs with extremely low permeability does not aptly capture the physics and complexities of gas storage and flow through their existing nanopores. This paper reviews the methods and experimental studies used to describe the flow mechanisms of gas through such systems, and critically recommends the direction in which this work could be extended. A quad-porosity shale system is defined not just as porosity in the matrix and fracture, but as a combination of multiple porosity values.

Findings

It has been observed from studies conducted that shale gas production modeled with conventional simulator/model is seen to be much lower than actually observed in field data. This paper reviews the various flow mechanisms in shale nanopores by capturing the physics behind the actual process. The contribution of Knudson diffusion and gas slippage, gas desorption and gas diffusion from Kerogen to total production is studied in detail.

Originality/value

The results observed from experimental studies and simulation runs indicate that the above effects should be considered while modeling and making production forecast for such reservoirs.

Details

World Journal of Engineering, vol. 13 no. 6
Type: Research Article
ISSN: 1708-5284

Keywords

Article
Publication date: 1 August 2002

C.H. Zhong, S. Yi and D.C. Whalley

Plastic ball grid array packages were aged for up to 2000 hours. Various solder ball pad metallurgies were studied and solder ball shear tests were conducted at a range of ageing…

Abstract

Plastic ball grid array packages were aged for up to 2000 hours. Various solder ball pad metallurgies were studied and solder ball shear tests were conducted at a range of ageing times. The solder ball shear strength was found to decrease after an initial hardening stage. The deterioration of solder ball shear strength was found to be mainly caused by the formation of intermetallic compound layers, together with microstructural coarsening and diffusion related porosity at the interface. For the ball pad metallurgy, two distinct intermetallic compound layer structures were observed to have formed after ageing. Once two continuous intermetallic compound layers formed fracture tended to occur at their interface. For the ball pad metallurgies which do not form two continuous intermetallic compound layers, the shear strength still decreased, due to the coarsening of the microstructure, intermetallic particle formation and diffusion related porosity at the surface of the Ni3Sn4.

Details

Soldering & Surface Mount Technology, vol. 14 no. 2
Type: Research Article
ISSN: 0954-0911

Keywords

Article
Publication date: 30 January 2024

Burçak Zehir, Mirsadegh Seyedzavvar and Cem Boğa

This study aims to comprehensively investigate the mixed-mode fracture behavior and mechanical properties of selective laser sintering (SLS) polyamide 12 (PA12) components…

Abstract

Purpose

This study aims to comprehensively investigate the mixed-mode fracture behavior and mechanical properties of selective laser sintering (SLS) polyamide 12 (PA12) components, considering different build orientations and layer thicknesses. The primary objectives include the following. Conducting mixed-mode fracture and mechanical analyses on SLS PA12 parts. Investigating the influence of build orientation and layer thickness on the mechanical properties of SLS-printed components. Examining the fracture mechanisms of SLS-produced Arcan fracture and tensile specimens through experimental methods and finite element analyses.

Design/methodology/approach

The research used a combination of experimental techniques and numerical analyses. Tensile and Arcan fracture specimens were fabricated using the SLS process with varying build orientations (X, X–Y, Z) and layer thicknesses (0.1 mm, 0.2 mm). Mechanical properties, including tensile strength, modulus of elasticity and critical stress intensity factor, were quantified through experimental testing. Mixed-mode fracture tests were conducted using a specialized fixture, and finite element analyses using the J-integral method were performed to calculate fracture toughness. Scanning electron microscopy (SEM) was used for detailed morphological analysis of fractured surfaces.

Findings

The investigation revealed that the highest tensile properties were achieved in samples fabricated horizontally in the X orientation with a layer thickness of 0.1 mm. Additionally, parts manufactured with a layer thickness of 0.2 mm exhibited favorable mixed-mode fracture behavior. The results emphasize the significance of build orientation and layer thickness in influencing mechanical properties and fracture behavior. SEM analysis provided valuable insights into the failure mechanisms of SLS-produced PA12 components.

Originality/value

This study contributes to the field of additive manufacturing by providing a comprehensive analysis of the mixed-mode fracture behavior and mechanical properties of SLS-produced PA12 components. The investigation offers novel insights into the influence of build orientation and layer thickness on the performance of such components. The combination of experimental testing, numerical analyses and SEM morphological observations enhances the understanding of fracture behavior in additive manufacturing processes. The findings contribute to optimizing the design and manufacturing of high-quality PA12 components using SLS technology.

Details

Rapid Prototyping Journal, vol. 30 no. 3
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 1 September 2023

Yongliang Wang, Liangchun Li and Yang Ju

Multi-well hydrofracturing is a key technology in engineering, and the evaluation, control and optimization of the fracturing network determine the recovery rate of unconventional…

Abstract

Purpose

Multi-well hydrofracturing is a key technology in engineering, and the evaluation, control and optimization of the fracturing network determine the recovery rate of unconventional oil and gas production. In engineering terms, altering well spacing and perforation initiation sequences changes fracture propagation behavior. Fracture propagation can result in fracture-to-fracture and well-to-well interactions. This may be attributed to the interference between fractures caused by squeezing of the reservoir strata. Meanwhile, the stratal movement caused by the propagation of the fractures may lead to either the secondary fracturing of wells with primary fractures or perforation to begin fracturing. Besides, the stratal compression and squeeze of multi-well hydrofracturing will cause earthquakes; the fracture size is different owing to the different fracturing scenarios, and the occurrence of induced microseismic events is still unknown; microseismic events also affect fracture orientation and deflection. If the mechanism of the above mechanical behavior cannot be clarified, optimizing the fracture network and reduce the induced microseismic disaster becomes difficult.

Design/methodology/approach

In this study, combined finite element-discrete element models were used to simulate the multi-well hydrofracturing. Numerical cases compared the fracture network, dynamic stratal movement and microseismic events at 50, 75 and 100 m well spacings, respectively, and varying initiation sequence of multiple horizontal wells.

Findings

From the results, fracture propagation in multi-well hydrofracturing may simulate the propagation and deflection of adjacent fractures and induce fracture-to-fracture and well-to-well interactions. As the well spacing increases, the effect of fracturing-induced stratal movement and squeezing deformation decrease. In alternate fracturing, starting from a well located in the middle can effectively reduce the influence of stratal movement on fracturing, and the fracturing scenario with cross-perforation can minimize the influence of stratal movement. The stratal movement between multiple wells is positively correlated to microseismic events, which behaviors can be effectively weakened by reducing the strata movement.

Originality/value

The fracture network, thermal-hydro-mechanical coupling, fracturing-induced stratal movement and microseismic events were analyzed. This study analyzed the intersection and propagation behavior of fractures in multi-well hydrofracturing, which can be used to evaluate and study the mechanism of hydrofracturing fracture network propagation in multiple horizontal wells and conduct fracture optimization research to form an optimized hydrofracturing scheme by reasonably arranging the spacing between wells and initiation sequences of perforation clusters.

Article
Publication date: 1 November 2022

Yongliang Wang and Xin Zhang

Hydrofracturing technology has been widely used in tight oil and gas reservoir exploitation, and the fracture network formed by fracturing is crucial to determining the resources…

Abstract

Purpose

Hydrofracturing technology has been widely used in tight oil and gas reservoir exploitation, and the fracture network formed by fracturing is crucial to determining the resources recovery rate. Due to the complexity of fracture network induced by the random morphology and type of fluid-driven fractures, controlling and optimising its mechanisms is challenging. This paper aims to study the types of multiscale mode I/II fractures, the fluid-driven propagation of multiscale tensile and shear fractures need to be studied.

Design/methodology/approach

A dual bilinear cohesive zone model (CZM) based on energy evolution was introduced to detect the initiation and propagation of fluid-driven tensile and shear fractures. The model overcomes the limitations of classical linear fracture mechanics, such as the stress singularity at the fracture tip, and considers the important role of fracture surface behaviour in the shear activation. The bilinear cohesive criterion based on the energy evolution criterion can reflect the formation mechanism of complex fracture networks objectively and accurately. Considering the hydro-mechanical (HM) coupling and leak-off effects, the combined finite element-discrete element-finite volume approach was introduced and implemented successfully, and the results showed that the models considering HM coupling and leak-off effects could form a more complex fracture network. The multiscale (laboratory- and engineering-scale) Mode I/II fractures can be simulated in hydrofracturing process.

Findings

Based on the proposed method, the accuracy and applicability of the algorithm were verified by comparing the analytical solution of KGD and PKN models. The effects of different in situ stresses and flow rates on the dynamic propagation of hydraulic fractures at laboratory and engineering scales were investigated. when the ratio of in situ stress is small, the fracture propagation direction is not affected, and the fracture morphology is a cross-type fracture. When the ratio of in situ stress is relatively large, the propagation direction of the fracture is affected by the maximum in situ stress, and it is more inclined to propagate along the direction of the maximum in situ stress, forming double wing-type fractures. Hydrofracturing tensile and shear fractures were identified, and the distribution and number of each type were obtained. There are fewer hydraulic shear fractures than tensile fractures, and shear fractures appear in the initial stage of fracture propagation and then propagate and distribute around the perforation.

Originality/value

The proposed dual bilinear CZM is effective for simulating the types of Mode I/II fractures and seizing the fluid-driven propagation of multiscale tensile and shear fractures. Practical fracturing process involves the multi-type and multiscale fluid-driven fracture propagation. This study introduces general fluid-driven fracture propagation, which can be extended to the fracture propagation analysis of potential fluid fracturing, such as other liquids or supercritical gases.

Article
Publication date: 30 November 2021

Fei Tong, Jie Yang, Meng Qiang Duan, Xu Fei Ma and Gao Chao Li

The purpose of this article is to understand the current research status and future development trends in the field of numerical simulation on rock mass grouting.

Abstract

Purpose

The purpose of this article is to understand the current research status and future development trends in the field of numerical simulation on rock mass grouting.

Design/methodology/approach

This article first searched the literature database (EI, Web of Science, CNKI, etc.) for keywords related to the numerical simulation of rock mass grouting to obtain the initial literature database. Then, from the initial database, several documents with strong relevance to the numerical simulation theme of rock mass grouting and high citation rate were selected; some documents from the references were selected as supplements, forming the sample database of this review study (a total of 90 articles). Finally, through sorting out the relationship among the literature, this literature review was carried out.

Findings

The numerical simulation of rock mass grouting is mainly based on the porous media model and the fractured media model. It has experienced the development process from Newtonian fluid to non-Newtonian fluid, from time-invariant viscosity to time-varying viscosity, and from generalized theoretical model to engineering application model. Based on this, this article summarizes four scientific problems that need to be solved in the future in this research field: the law of grout distribution at the cross fissures, the grout diffusion mechanism under multi-field coupling, more accurate grouting theoretical model and simulation technology with strong engineering applicability.

Originality/value

This research systematically analyzes the current research status and shortcomings of numerical simulation on rock mass grouting, summarizes four key issues in the future development of this research field and provides new ideas for the future research on numerical simulation on rock mass grouting.

Details

Engineering Computations, vol. 39 no. 5
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 18 July 2022

Mirsadegh Seyedzavvar and Cem Boğa

The purpose of this study was to investigate the effects of CaCO3 nanoparticles on the mechanical properties, and mixed-mode fracture behavior of acrylonitrile butadiene styrene…

159

Abstract

Purpose

The purpose of this study was to investigate the effects of CaCO3 nanoparticles on the mechanical properties, and mixed-mode fracture behavior of acrylonitrile butadiene styrene 3D printed samples with different internal architectures.

Design/methodology/approach

The nanocomposite filaments have been fabricated by a melt-blending technique. The standard tensile, compact tension and special fracture test samples, named Arcan specimens, have been printed at constant extrusion parameters and at four different internal patterns. A special fixture was used to carry out the mixed-mode fracture tests of Arcan samples. Finite element analyses using the J-integral method were performed to calculate the fracture toughness of such samples. The fractographic observations were used to evaluate the mechanism of fracture at different concentrations of nanoparticles.

Findings

The addition of CaCO3 nanoparticles has resulted in a significant increase in the fracture loading of the samples, although this increase was not consistent for all the filling patterns, being more significant for samples with linear and triangular structures. According to the fractographic observations, the creation of uniformly distributed microvoids due to the blunting effect of nanoparticles and 3D stress state at the crack tip in the samples with linear and triangular structures justify the enhancement in the fracture loading by the addition of CaCO3 nanoparticles in the matrix.

Originality/value

There is a significant gap in the knowledge of the effects of different nanoparticles in the polymer samples produced by the fused filament fabrication process. One of such nanoparticles is an inorganic CaCO3 nanoparticle that has been frequently used as nanofillers to improve the thermomechanical properties of thermoplastic polymers. Here, experimental and numerical studies have been conducted to investigate the effects of such nanoadditives on the mechanical and fracture behavior of 3D printed samples.

Details

Rapid Prototyping Journal, vol. 29 no. 1
Type: Research Article
ISSN: 1355-2546

Keywords

1 – 10 of over 4000