Search results

1 – 10 of 20
Article
Publication date: 2 September 2014

Bhanudas Dattatraya Bachchhav, Geeta S. Lathkar and Harijan Bagchi

This paper aims to present a study of frictional characteristics of steel/die steel pair under sliding contact in presence of a set of formulated lubricants. AISI 1010 low carbon…

Abstract

Purpose

This paper aims to present a study of frictional characteristics of steel/die steel pair under sliding contact in presence of a set of formulated lubricants. AISI 1010 low carbon steels, although being strong, are less formable grades of steel and require appropriate selection of lubricants in tribological conditions.

Design/methodology/approach

A total of three mineral-based lubricating blends were formulated for varying concentration of ester. Plan of experiments, based on Taguchi’s analysis technique were performed using dedicated test rig based on “pin-on-disc” principle.

Findings

A correlation was established between additive concentration, sliding speed and pressure with coefficient of friction by multiple linear regression. On the basis of experimental results and S/N ratio analysis, ranking of the parameters has been done. A possible regime of working with such lubricants is also suggested.

Practical implications

Due to voluminous data involved, a few dominant process parameters were taken into consideration for the study.

Originality/value

This paper is highlighting the tribo-effects of additives to render it as suitable lubricant in sliding contact conditions. This paper also suggested an approach for selection of optimum regime of working in the light of “Stribeck Curve” for ester-containing lubricating oils.

Details

Industrial Lubrication and Tribology, vol. 66 no. 6
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 16 August 2019

Sabah Khammass Hussein, Isam Tareq Abdullah and Abbas Khammas Hussein

The purpose of this paper is to join AA5052 to AISI 1006 steel sheets using the spot friction forming technique.

Abstract

Purpose

The purpose of this paper is to join AA5052 to AISI 1006 steel sheets using the spot friction forming technique.

Design/methodology/approach

A steel sheet was pre-holed with a diameter of 4.8 mm and pre-threaded with a single internal M6 thread. Lap joint configuration was used so that the aluminium specimen was put over steel. A rotating tool with a 10 mm diameter was used for the joining process. A Taguchi method was used to design three process parameters (plunging tool depth, rotating speed and preheating time), with three levels for each parameter. The effect of the process parameters on the joint shear strength was analysed. The macrostructure, microstructure and scanning electron microscope of the joint were investigated. The temperature distribution during the joining process was recorded.

Findings

The formed aluminium was extruded through the steel hole and penetrated through the thread slot. A mechanical interlock was achieved between the extruded aluminium and the steel. The plunging depth of the tool exhibited a significant effect on the joint shear strength. The joint efficiency increased gradually as the plunging depth increased. Two modes of failure were found shear and pull-out. The maximum temperature during the process reached 50 per cent of aluminium’s melting point.

Originality/value

For the first time, AA5052 was joined with AISI 1006 steel using a friction spot forming technique with an excellent joint efficiency.

Details

Multidiscipline Modeling in Materials and Structures, vol. 15 no. 6
Type: Research Article
ISSN: 1573-6105

Keywords

Article
Publication date: 31 December 2019

Isam Tareq Abdullah, Sabah Khammass Hussein and Abbas Khammas Hussein

The purpose of this paper is to join sheets of an aluminium alloy together with pre-holed carbon steel via friction spot technique.

Abstract

Purpose

The purpose of this paper is to join sheets of an aluminium alloy together with pre-holed carbon steel via friction spot technique.

Design/methodology/approach

An AISI 1006 steel sheet was a pre-holed with a 4.8 mm diameter and put under AA5052 sheet with a lap joint configuration. The joining process was carried out by extruding the aluminium through the steel hole using a rotating tool of 10 mm diameter. Furthermore, three process parameters (pre-heating time, rotating speed and plunging depth of the tool) with three values for each parameter were used to study their effects on the joints quality. In order to join samples, nine experiments were designed according to a Taguchi method. Shear strength, microstructure and X-ray diffraction tests of the joint were carried out.

Findings

The joining mechanism occurred by a mechanical interlock of the extruded aluminium with the inner surface of the steel hole. The tool plunging depth had a significant effect on the shear strength of the joint. The shear strength of two joints exceeded the shear strength of the wrought material (AA5052). All samples failed with two modes: pull-out and shearing of the extruded aluminium.

Originality/value

For the first time, the extrusion technique was used to join AA5052 sheet together with pre-holed carbon steel, with a perfect joint efficiency.

Details

International Journal of Structural Integrity, vol. 11 no. 6
Type: Research Article
ISSN: 1757-9864

Keywords

Article
Publication date: 1 April 2006

Jaroslav Mackerle

To provide a selective bibliography for researchers working with bulk material forming (specifically the forging, rolling, extrusion and drawing processes) with sources which can…

4712

Abstract

Purpose

To provide a selective bibliography for researchers working with bulk material forming (specifically the forging, rolling, extrusion and drawing processes) with sources which can help them to be up‐to‐date.

Design/methodology/approach

A range of published (1996‐2005) works, which aims to provide theoretical as well as practical information on the material processing namely bulk material forming. Bulk deformation processes used in practice change the shape of the workpiece by plastic deformations under forces applied by tools and dies.

Findings

Provides information about each source, indicating what can be found there. Listed references contain journal papers, conference proceedings and theses/dissertations on the subject.

Research limitations/implications

It is an exhaustive list of papers (1,693 references are listed) but some papers may be omitted. The emphasis is to present papers written in English language. Sheet material forming processes are not included.

Practical implications

A very useful source of information for theoretical and practical researchers in computational material forming as well as in academia or for those who have recently obtained a position in this field.

Originality/value

There are not many bibliographies published in this field of engineering. This paper offers help to experts and individuals interested in computational analyses and simulations of material forming processes.

Details

Engineering Computations, vol. 23 no. 3
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 1 April 2009

M. Grujicic, B. Pandurangan, N. Coutris, B.A. Cheeseman, W. N. Roy and R.R. Skaggs

A large‐strain/high‐deformation rate model for clay‐free sand recently proposed and validated in our work [1,2], has been extended to sand containing relatively small (< 15vol.%…

Abstract

A large‐strain/high‐deformation rate model for clay‐free sand recently proposed and validated in our work [1,2], has been extended to sand containing relatively small (< 15vol.%) of clay and having various levels of saturation with water. The model includes an equation of state which represents the material response under hydrostatic pressure, a strength model which captures material behavior under elastic‐plastic conditions and a failure model which defines conditions and laws for the initiation and evolution of damage/failure in the material. The model was validated by comparing the computational results associated with detonation of a landmine in clayey sand (at different levels of saturation with water) with their computational counterparts.

Details

Multidiscipline Modeling in Materials and Structures, vol. 5 no. 4
Type: Research Article
ISSN: 1573-6105

Keywords

Article
Publication date: 21 September 2018

Isam Tareq Abdullah and Sabah Khammass Hussein

The purpose of this paper is to optimize the welding parameters: rotating speed and plunging depth of carbon steel and pure copper joints using friction stir spot welding (FSSW…

Abstract

Purpose

The purpose of this paper is to optimize the welding parameters: rotating speed and plunging depth of carbon steel and pure copper joints using friction stir spot welding (FSSW) with the aid of the design of experiments (DOE) method.

Design/methodology/approach

Carbon steel and pure copper sheets were welded using the FSSW technique with a cylindrical tool and without a probe. The welding parameters were: rotating speed: 1,120, 1,400 and 1,800 RPM and plunging depth: 0.2 and 0.4 mm. The welding process was carried out both with and without pre-heating. The welded specimens were analyzed using a shear tensile test. A microstructural investigation at the optimum conditions was carried out. The results were analyzed and optimized using the statistical software Minitab and following the DOE method.

Findings

Pre-heating the sample and increasing the rotating speed and plunging depth increased the tensile shear force of the joint. The plunging depth has the biggest effect on the joint efficiency compared with the rotating speed. The optimum shear force (4,560 N) was found at 1,800 RPM, 0.4 mm plunge depth and with pre-heating. The welding parameters were modified so that the samples were welded at 1,800 RPM and at plunging depths of 0.45–1 mm in 0.05 mm steps. The optimized shear force was 5,400 N. The fractured samples exhibited two types of failure mode: interfacial and nugget pull-out.

Originality/value

For the first time, pure copper and carbon steel sheets were welded using FSSW and a tool without a probe with ideal joint efficiency (95 percent).

Details

Multidiscipline Modeling in Materials and Structures, vol. 14 no. 5
Type: Research Article
ISSN: 1573-6105

Keywords

Article
Publication date: 1 April 2001

G. Batis, P. Pantazopoulou and A. Zagogiannis

The purpose of this work was to investigate the possibilities for the exploitation of the powder by‐product of oxygen convertor slag from the ferronickel industry as pigment in…

Abstract

The purpose of this work was to investigate the possibilities for the exploitation of the powder by‐product of oxygen convertor slag from the ferronickel industry as pigment in anticorrosive non‐toxic paints. The chemical composition of the powder shows a large content of Fe3O4 and a high value of pH, two features favouring its use in anticorrosive paints. Paints with this powder, either unrefined or processed, as a pigment and chlorinated rubber resin were produced and tested by the following methods: half‐cell potential, mass loss, chloride diffusion and EIS. The results indicated that protection of steel was achieved to a satisfactory level, especially with the processed material.

Details

Pigment & Resin Technology, vol. 30 no. 2
Type: Research Article
ISSN: 0369-9420

Keywords

Article
Publication date: 9 April 2018

Ramesh S. and Jenarthanan M.P.

This study aims to focus on experimenting the performance of aluminum (Al) powder mixed electric discharge machining (PMEDM) of two different materials viz plastic mould die steel…

Abstract

Purpose

This study aims to focus on experimenting the performance of aluminum (Al) powder mixed electric discharge machining (PMEDM) of two different materials viz plastic mould die steel (AISI P20) and nickel-based super alloy (Nimonic 75). This experimental study also focuses on using three different tool materials such as copper, brass and tungsten to analyze their influence on the process output. These materials find many uses in industrial as well as aerospace applications. The performance measures considered in this work are material removal rate (MRR), tool wear rate (TWR) and surface roughness (SR).

Design/methodology/approach

The experimental design used in this work is based on Taguchi’s L18 orthogonal array. Besides considering work and tool material as one of the process variables, other process variables are peak current (Ip), pulse on time (Ton) and concentration of powder (Cp). The analysis of variance (ANOVA) is performed on the experimental data to determine the significant variables that influence the output.

Findings

It is found that copper produced maximum MRR and brass tool exhibited higher TWR. However, the surface finish of the machined work piece was very much improved by using the brass tool. Though the performance of tungsten tool lies between the above two tool materials, it showed very little wear during EDM with or without the addition of Al powder.

Originality/value

The experimental investigation of PMEDM of nickel-based super alloy (Nimonic 75) has not been attempted before. Besides that, the study on the influence of tungsten tool on the performance of EDM is also very limited.

Details

World Journal of Engineering, vol. 15 no. 2
Type: Research Article
ISSN: 1708-5284

Keywords

Article
Publication date: 1 August 1998

Jaroslav Mackerle

This paper gives a review of the finite element techniques (FE) applied in the area of material processing. The latest trends in metal forming, non‐metal forming, powder…

4529

Abstract

This paper gives a review of the finite element techniques (FE) applied in the area of material processing. The latest trends in metal forming, non‐metal forming, powder metallurgy and composite material processing are briefly discussed. The range of applications of finite elements on these subjects is extremely wide and cannot be presented in a single paper; therefore the aim of the paper is to give FE researchers/users only an encyclopaedic view of the different possibilities that exist today in the various fields mentioned above. An appendix included at the end of the paper presents a bibliography on finite element applications in material processing for 1994‐1996, where 1,370 references are listed. This bibliography is an updating of the paper written by Brannberg and Mackerle which has been published in Engineering Computations, Vol. 11 No. 5, 1994, pp. 413‐55.

Details

Engineering Computations, vol. 15 no. 5
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 21 September 2012

Sheri Kurgin, Jean M. Dasch, Daniel L. Simon, Gary C. Barber and Qian Zou

The purpose of this paper is to evaluate the cooling ability of minimum quantity lubrication (MQL) cutting fluid.

1204

Abstract

Purpose

The purpose of this paper is to evaluate the cooling ability of minimum quantity lubrication (MQL) cutting fluid.

Design/methodology/approach

An experimental system is devised to find the heat transfer coefficient of MQL under simulated reaming conditions. Cooling rate of the specimen is measured with an infrared camera. The effect of air pressure and oil volume on cooling rate is tested. Metal cutting tests are performed to evaluate the effect of heat transfer coefficient on workpiece temperature.

Findings

Convective heat transfer coefficient for MQL increases with increasing air pressure. Oil volume has an indeterminate effect on the heat transfer coefficient; however, it is a dominant factor for controlling temperature during reaming.

Practical implications

The results of the study can provide guidance to optimize the temperature controlling ability of MQL for production.

Originality/value

There is limited information available in literature regarding the heat transfer coefficient of metal working fluids, particularly for MQL. In particular, experiments designed to investigate the effect of air pressure and oil volume on the heat transfer coefficient of the mist have not been previously documented. This information may be used to improve the overall cooling ability of MQL mist, thus increasing its effectiveness at controlling tool wear and maintaining part quality. The other major contribution of this work is to separate the role of the cooling and lubrication for controlling temperature while reaming aluminum. Prior to this study, there has been relatively little research performed for the reaming metal cutting operation, and still less for reaming with MQL. The nature of how metal working fluids control temperature is not fully understood, and this work provides insight as to whether cooling or lubrication plays the dominant role for reaming.

Details

Industrial Lubrication and Tribology, vol. 64 no. 6
Type: Research Article
ISSN: 0036-8792

Keywords

1 – 10 of 20