Search results

1 – 10 of 514
Article
Publication date: 19 January 2024

Zhengwei Song, Zhi-Hui Xie, Lifeng Ding and Shengjian Zhang

This paper aims to comprehensively review the preparation methods of superhydrophobic surfaces (SHPS) for corrosion protection of Mg alloy in recent years.

Abstract

Purpose

This paper aims to comprehensively review the preparation methods of superhydrophobic surfaces (SHPS) for corrosion protection of Mg alloy in recent years.

Design/methodology/approach

The preparation methods, wettability and corrosion resistance of SHPS on Mg alloy in the past three years are systematically described in this paper.

Findings

Two types of SHPS, including single-layer and multilayer coatings for corrosion protection of Mg alloy are summarized. Preparing multilayered coatings with multifunction is the current trend in developing SHPS on Mg alloy.

Originality/value

This paper reviewed the preparation methods and corrosion resistance of SHPS on Mg alloys. It provides a valuable reference for researchers to develop highly durable SHPS with excellent corrosion resistance for Mg alloys.

Details

Anti-Corrosion Methods and Materials, vol. 71 no. 2
Type: Research Article
ISSN: 0003-5599

Keywords

Article
Publication date: 23 March 2022

Saeed Bastani, Mojtaba Jalili, Mehdi Ghahari and Parand Banihashem

This study aims to investigate the effect of trisodium nitrilotriacetic acid (NTA) on the physical and luminescence emission properties of NaLuF4:Yb, Tm Upconversion (UC…

Abstract

Purpose

This study aims to investigate the effect of trisodium nitrilotriacetic acid (NTA) on the physical and luminescence emission properties of NaLuF4:Yb, Tm Upconversion (UC) particles and compared with trisodium citrate (CA). Upconversion materials have been remarkably considered in many applications in the past decades. However, the morphology of the UC particles affects their emission properties, depending on the synthesis situation.

Design/methodology/approach

The UC particles were synthesized by the hydrothermal method. Properties such as crystal phase, particle morphology, particle size, smoothness and uniformity of particle surface and their emission intensity in the UV–Vis region were studied.

Findings

Observations showed that pH is an essential factor in determining the crystalline phase. In addition, quality factors affect the morphology, particle size and surface smoothness of crystalline facets. It was also found that the UC particles synthesized in the presence of trisodium NTA have a much higher emission intensity than those synthesized in the presence of CA. The use of UC particles in security inks to maintain the brand was also investigated.

Originality/value

To the best of the authors’ knowledge, for the first time, the effect of trisodium NTA as a chelating agent was investigated on morphology and UC intensity of NaLuF4:Yb,Tm phosphor.

Details

Pigment & Resin Technology, vol. 52 no. 5
Type: Research Article
ISSN: 0369-9420

Keywords

Article
Publication date: 19 November 2021

Fanhua Wu, Yuyu Zhang, Tao Li, Yongfeng Liu, Yi Liu, Zhiang Yuan and Rongjun Qu

The purpose of this study was to prepare carboxylated attapulgite (APT-COOH) and then be used as one of the ligands to prepare metal organic framework (MOF) hybrid materials to…

Abstract

Purpose

The purpose of this study was to prepare carboxylated attapulgite (APT-COOH) and then be used as one of the ligands to prepare metal organic framework (MOF) hybrid materials to reduce the cost of MOF materials and improve the dispersed condition of APT. And then the materials were used to enrich anionic dye Congo red from aqueous solution.

Design/methodology/approach

The MOF hybrid materials were designed by means of facile reflux method rather than hydrothermal method, characterized by Thermogravimetric Analysis (TGA), Fourier Transform Infrared (FTIR) Spectrometer and pore structure. The dispersed degree of APT-COOH in the MOF materials was validated according to adsorption efficiency for Congo red.

Findings

Due to introduction of APT-COOH, the microenvironment of the MOF materials changed, leading to different adsorption behaviors. Compared to the MOF material without APT-COOH, the adsorption capacities of the hybridized MOF materials with different amounts of APT-COOH introduced increased by 4.58% and 15.55%, respectively, as the initial concentration of Congo red solution of 300 mg/L. Meantime, hybridized MOF materials were suitable to remove Congo red with low concentration, while the MOF material without APT-COOH was appropriate to enrich Congo red with high concentration.

Research limitations/implications

The microstructure of MOF hybrid materials in detail is the further and future investigation.

Practical implications

This study will provide a method to reduce the cost of MOF materials and a theoretical support to treat anionic dyes from aqueous solution.

Originality/value

APT-COOH was prepared and used as one of the ligands to synthesize MOF material to improve the dispersed degree of APT-COOH and reduce the cost of the MOF materials. The adsorption efficiency was greatly enhanced with low concentration of Congo red solution, and the results indicated that hydrogen bonding, electrostatic interaction, and p-p conjugation were involved in the adsorption process. The prepared MOFs materials exhibited excellent adsorption efficiency, which made the present materials highly promising and potentially useful in practical application as adsorbents to enrich anionic dyes such as Congo red from aqueous solution.

Details

Pigment & Resin Technology, vol. 51 no. 6
Type: Research Article
ISSN: 0369-9420

Keywords

Article
Publication date: 24 January 2024

Dexin Chen, Hongyuan He, Zhixin Kang and Wei Li

This study aims to review the current one-step electrodeposition of superhydrophobic coatings on metal surfaces.

Abstract

Purpose

This study aims to review the current one-step electrodeposition of superhydrophobic coatings on metal surfaces.

Design/methodology/approach

One-step electrodeposition is a versatile and simple technology to prepare superhydrophobic coatings on metal surfaces.

Findings

Preparing superhydrophobic coatings by one-step electrodeposition is an efficient method to protect metal surfaces.

Originality/value

Even though there are several technologies, one-step electrodeposition still plays a significant role in producing superhydrophobic coatings.

Details

Anti-Corrosion Methods and Materials, vol. 71 no. 2
Type: Research Article
ISSN: 0003-5599

Keywords

Article
Publication date: 11 July 2024

Chunxiu Qin, Yulong Wang, XuBu Ma, Yaxi Liu and Jin Zhang

To address the shortcomings of existing academic user information needs identification methods, such as low efficiency and high subjectivity, this study aims to propose an…

Abstract

Purpose

To address the shortcomings of existing academic user information needs identification methods, such as low efficiency and high subjectivity, this study aims to propose an automated method of identifying online academic user information needs.

Design/methodology/approach

This study’s method consists of two main parts: the first is the automatic classification of academic user information needs based on the bidirectional encoder representations from transformers (BERT) model. The second is the key content extraction of academic user information needs based on the improved MDERank key phrase extraction (KPE) algorithm. Finally, the applicability and effectiveness of the method are verified by an example of identifying the information needs of academic users in the field of materials science.

Findings

Experimental results show that the BERT-based information needs classification model achieved the highest weighted average F1 score of 91.61%. The improved MDERank KPE algorithm achieves the highest F1 score of 61%. The empirical analysis results reveal that the information needs of the categories “methods,” “experimental phenomena” and “experimental materials” are relatively high in the materials science field.

Originality/value

This study provides a solution for automated identification of academic user information needs. It helps online academic resource platforms to better understand their users’ information needs, which in turn facilitates the platform’s academic resource organization and services.

Details

The Electronic Library , vol. 42 no. 5
Type: Research Article
ISSN: 0264-0473

Keywords

Article
Publication date: 11 September 2019

Y.J. Guo, W. Cheng and P.S. Liu

The purpose of this paper is to provide an investigation on a new kind of photocatalytic material, namely, the porous ceramic foam loading titanium dioxide, which can make an…

Abstract

Purpose

The purpose of this paper is to provide an investigation on a new kind of photocatalytic material, namely, the porous ceramic foam loading titanium dioxide, which can make an effective photocatalytic degradation of the methyl orange (MO) solution in the wastewater.

Design/methodology/approach

The natural zeolite powder has been used as the primary raw material to produce a sort of lightweight porous ceramic foam by impregnating polymer foam in slurry and then sintering. With the sol-gel method, a kind of open-cell reticular porous ceramic foam loading TiO2 film was obtained having a good photocatalytic action, and the resultant porous composite product presents the bulk density of 0.3~0.6 g/cm3 to be able to float on water.

Findings

The MO could tend to be completely degraded in the solution with a certain concentration by the TiO2-loaded ceramic foam irradiated with ultraviolet light, and this composite foam was found to have high degradation efficiency for the MO solution in a wide range of pH.

Originality/value

This work presents a TiO2-loaded ceramic foam that can effectively photo-catalyze to degrade the MO in water, and the degradation efficiency were examined under different conditions of the MO solution with various pH values.

Details

Multidiscipline Modeling in Materials and Structures, vol. 15 no. 6
Type: Research Article
ISSN: 1573-6105

Keywords

Article
Publication date: 8 March 2022

Ibrahim A. Amar, Sarah S. Kanah, Hibah A. Hijaz, Mabroukah A. Abdulqadir, Shamsi A. Shamsi, Ihssin A. Abdalsamed and Mohammed A. Samba

The purpose of this research is to assess the removal of oil spills from the seawater surface as well as the antibacterial activity of ZnFe2O4-cetyltrimethylammonium bromide…

Abstract

Purpose

The purpose of this research is to assess the removal of oil spills from the seawater surface as well as the antibacterial activity of ZnFe2O4-cetyltrimethylammonium bromide (CTAB, cationic surfactant) magnetic nanoparticles (ZFO-CTAB MNPs).

Design/methodology/approach

A CTAB-assisted sol–gel method was used to synthesize ZFO-CTAB MNPs. X-ray powder diffraction and Fourier transform infrared spectroscopy were used for ZFO-CTAB MNPs characterization. Also, the magnetic force and apparent density of ZFO-CTAB MNPs were determined. The oil spill cleanup was investigated by using the gravimetric oil removal (GOR) technique, which used ZFO-CTAB MNPs as oil absorbent material and four oil samples (crude, diesel, gasoline and used oil) as oil spill models. The antibacterial activity of ZFO-CTAB MNPs against Gram-negative bacteria (Pseudomonas aeruginosa, Escherichia coli and Salmonella typhi) was investigated by using the optical density method.

Findings

The results revealed that, when the amount of ZFO-CTAB was 0.01 g, gasoline oil had the highest GOR (51.80 ± 0.88 g/g) and crude oil had the lowest (11.29 ± 0.82 g/g). Furthermore, for Escherichia coli, Salmonella typhi and Pseudomonas aeruginosa, ZFO-CTAB MNPs inhibited bacterial growth with a higher percentage (94.24%–95.63%).

Originality/value

The applications of ZFO-CTAB MNPs in the cleanup of oil spills from aqueous solutions, as well as their antibacterial activity. The results showed that ZFO-CTAB MNPs are a promising material for removing oil spills from bodies of water as well as an antibacterial agent against Gram-negative bacterial strains.

Details

World Journal of Engineering, vol. 20 no. 4
Type: Research Article
ISSN: 1708-5284

Keywords

Article
Publication date: 7 September 2012

M. Rashidzadeh, B. Faridnia and M.R. Ghasemi

The purpose of this paper is to study the effect of synthesis conditions on properties of TiO2 nanoparticles to be used for photocatalysis and also producing TiO2 using a low…

1373

Abstract

Purpose

The purpose of this paper is to study the effect of synthesis conditions on properties of TiO2 nanoparticles to be used for photocatalysis and also producing TiO2 using a low temperature method.

Design/methodology/approach

TiO2 nanoparticles were synthesised via a sol‐gel method at low temperature and the effect of parameters such as: synthesis temperature, HNO3 concentration, calcination temperature and synthesis time on properties of TiO2 were studied. The effects of the physico‐chemical properties of TiO2, its concentration and light intensity on photocatalytic properties of TiO2 nanoparticles were investigated also.

Findings

The results showed that TiO2 with Anatase phase were formed at 80‐100°C by using proper HNO3 concentration, synthesis time and calcinations temperature. Calcinations programme and temperature and also the synthesis time affect the formation of TiO2 crystalline phase (i.e. Rutile and Brookite), their surface area and crystallite size. To evaluate the photocatalytic properties of TiO2 nanoparticles, fluorescein was used as a model molecule. Results showed that degradation of fluorescein could be described by pseudo‐first order kinetics. The effect of TiO2 concentration and light intensity on photocatalytic activity showed that increasing concentration of TiO2 and the light intensity would increase the degradation of fluorescein.

Originality/value

The method used in this work to prepare TiO2 nanoparticles is an economic method for low temperature synthesis of TiO2 nanoparticles with high photocatalytic activity, which could find numerous applications in coating technology.

Details

Pigment & Resin Technology, vol. 41 no. 5
Type: Research Article
ISSN: 0369-9420

Keywords

Article
Publication date: 18 June 2019

Walaa M. Abd El-Gawad, Nivin M. Ahmed, Mohamed M. Selim, E. Hamed and Eglal R. Souaya

In recent years, zeolites have been highlighted as a new component in many industrial applications owing to their unique properties. The purpose of this study is to apply three…

Abstract

Purpose

In recent years, zeolites have been highlighted as a new component in many industrial applications owing to their unique properties. The purpose of this study is to apply three prepared types of zeolites Na-X, Na-Y and hydroxysodalite (Na-HS) in anticorrosive paint formulations to be evaluated as a partial replacement to zinc phosphate in anticorrosive paint formulations to protect carbon steel.

Design/methodology/approach

The three types of zeolites were characterized using different instrumental analysis such as X-ray diffraction, scanning electron microscopy and X-ray fluorescence. Evaluation of zeolites was done using American society for material and testing. Then, they were incorporated in paint formulations based on medium oil-modified soya-bean dehydrated castor oil alkyd resin in the presence and absence of zinc phosphate. Their corrosion behavior was estimated using both immersion test and electrochemical impedance measurements in 3.5% NaCl.

Findings

Generally, the prepared zeolites exhibited good corrosion protection performance, but in presence of zinc phosphate the performance was better. This proves that, zeolites by themselves can resist corrosion but not efficiently, while in presence of zinc phosphate and owing to a synergistic effect between them, the performance was better. This opens the way to partial replacement of zinc phosphate with another safer and cheaper ingredient, which is zeolite.

Practical implications

The three zeolites can be applied in many industries besides the paint industry, such as reinforcing filler in rubber, plastics and ceramic composites, also can be applied in paper filling, paper coatings and electrical insulation.

Originality/value

The three zeolites are environmentally friendly materials that can partially replace other expensive anticorrosive pigments (e.g. zinc phosphate).

Details

Pigment & Resin Technology, vol. 48 no. 4
Type: Research Article
ISSN: 0369-9420

Keywords

Article
Publication date: 26 February 2024

Wenhai Tan, Yichen Zhang, Yuhao Song, Yanbo Ma, Chao Zhao and Youfeng Zhang

Aqueous zinc-ion battery has broad application prospects in smart grid energy storage, power tools and other fields. Co3O4 is one of the ideal cathode materials for water zinc-ion…

40

Abstract

Purpose

Aqueous zinc-ion battery has broad application prospects in smart grid energy storage, power tools and other fields. Co3O4 is one of the ideal cathode materials for water zinc-ion batteries due to their high theoretical capacity, simple synthesis, low cost and environmental friendliness. Many studies were concentrated on the synthesis, design and doping of cathodes, but the effect of process parameters on morphology and performance was rarely reported.

Design/methodology/approach

Herein, Co3O4 cathode material based on carbon cloth (Co3O4/CC) was prepared by different temperatures hydrothermal synthesis method. The temperatures of hydrothermal reaction are 100°C, 120°C, 130°C and 140°C, respectively. The influence of temperatures on the microstructures of the cathodes and electrochemical performance of zinc ion batteries were investigated by X-ray diffraction analysis, scanning electron microscopy, cyclic voltammetry curve, electrochemical charging and discharging behavior and electrochemical impedance spectroscopy test.

Findings

The results show that the Co3O4/CC material synthesized at 120°C has good performance. Co3O4/CC nanowire has a uniform distribution, regular surface and small size on carbon cloth. The zinc-ion battery has excellent rate performance and low reaction resistance. In the voltage range of 0.01–2.2 V, when the current density is 1 A/g, the specific capacity of the battery is 108.2 mAh/g for the first discharge and the specific capacity of the battery is 142.6 mAh/g after 60 charge and discharge cycles.

Originality/value

The study aims to investigate the effect of process parameters on the performance of zinc-ion batteries systematically and optimized applicable reaction temperature.

Details

World Journal of Engineering, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1708-5284

Keywords

1 – 10 of 514