Search results

1 – 10 of 990
To view the access options for this content please click here
Article

Desmond Teck Chye Ang and Seng Neon Gan

The purpose of this paper is to develop palm oil‐based alkyds as ultraviolet (UV) curable coatings and investigate the parameters that affect the coating performances.

Abstract

Purpose

The purpose of this paper is to develop palm oil‐based alkyds as ultraviolet (UV) curable coatings and investigate the parameters that affect the coating performances.

Design/methodology/approach

Alkyds were formulated from palm stearin, glycerol, phthalic anhydride and maleic acid. Keeping the total molar amount of dicarboxylic acids constant, the proportions of maleic acid and phthalic anhydride were varied in order to produce polymer chains with different content of unsaturation, which is crucial for UV curability. Characterisations were carried out by FTIR and 1HNMR. The alkyds were then mixed with methyl methacrylate (MMA) monomer as active diluents and cured by exposure to UV light. Performances of the cured coatings were tested in terms of film hardness, adhesion, water and alkali resistance, and thermal stability.

Findings

Upon introducing sufficient C=C, the alkyd in combination with MMA is able to UV‐cure within short time and produce film of satisfactory quality. There are several other factors, which influence the coating properties; these include thickness of coating, ratio of alkyd to active diluents, and duration of UV exposure.

Social implications

The product is a form of green technology that could benefit the environment as it involves very low or near zero emission of volatile organic compounds (VOC).

Originality/value

The novelty of this work lies in the formulation of new products from palm stearin, leading to new developments in the surface coating and palm oil industries.

Details

Pigment & Resin Technology, vol. 41 no. 5
Type: Research Article
ISSN: 0369-9420

Keywords

To view the access options for this content please click here
Article

Dawid J. D'Melo, Anagha S. Sabnis, Mohan A. Shenoy and Mukesh S. Kathalewar

The purpose of this paper is to evaluate the efficiency of acrylated guar gum (AGG) as an additive in alkyd resin for improved mechanical properties and to optimize the…

Abstract

Purpose

The purpose of this paper is to evaluate the efficiency of acrylated guar gum (AGG) as an additive in alkyd resin for improved mechanical properties and to optimize the results of such an addition.

Design/methodology/approach

For studying the effect of AGG on coating properties, guar gum was modified to various degrees of esterification and various compositions of alkyd systems were made by incorporating different concentrations of AGG. The mechanical and solvent absorption of the unmodified and modified alkyd systems were characterized.

Findings

The incorporation of AGG into alkyd coating showed significant improvement of mechanical properties over the unmodified one. The modification caused an additional crosslink site through its unsaturation which led to increased crosslink density without phase separation of additive from the alkyd system which was confirmed by SEM scans.

Research limitations/implications

The reactive additive, AGG used in the present study was synthesised using acryloyl chloride. Besides, it could also be synthesised from methacryloyl chloride and the effect of methyl substitution on water and solvent absorption could be studied.

Practical implications

The method developed provided a simple and practical solution to improving the mechanical properties of alkyd coatings.

Originality/value

The method for enhancing mechanical properties of cured alkyd system was novel and could find numerous applications in surface coatings.

Details

Pigment & Resin Technology, vol. 43 no. 2
Type: Research Article
ISSN: 0369-9420

Keywords

To view the access options for this content please click here
Article

Americus

Alkyd resins are among the most mature raw materials the protective coatings industry uses. At the same time they are the largest volume oil‐based vehicles used in paints…

Abstract

Alkyd resins are among the most mature raw materials the protective coatings industry uses. At the same time they are the largest volume oil‐based vehicles used in paints around the world. This might raise the question “is there anything really new with alkyds?” The answer is a resounding “yes!” There is new commercial as well as technical activity. In the former category one finds activity in the Arab world where oil‐based affluence has created a need for protective coatings raw materials. Thus in Jordan a company known as Universal Chemical Industries has set up to produce alkyd resins as well as poly(vinyl acetate) emulsions with the objective of supplying the domestic coatings industry. Technology comes from Ashland Chemicals' European subsidiaries. Similarly, in Saudi Arabia, Arabian Gulf Resins International announced plans to build a large alkyd resin plant at Damman using Deutsche Texaco's technology.

Details

Pigment & Resin Technology, vol. 13 no. 6
Type: Research Article
ISSN: 0369-9420

To view the access options for this content please click here
Article

Sushil Chandra and Suman Pasari

Alkyds are the work horse of paint industry. In order to obtain desired film properties, alkyd resins are frequently modified by other resins and polymers either by…

Abstract

Alkyds are the work horse of paint industry. In order to obtain desired film properties, alkyd resins are frequently modified by other resins and polymers either by physically blending them or chemically incorporating them. Some of the recent physical modifications of alkyds have been described in this first part of the article. The chemical modifications will be described in the second part.

Details

Pigment & Resin Technology, vol. 10 no. 9
Type: Research Article
ISSN: 0369-9420

To view the access options for this content please click here
Article

Organic Coatings are used for protection of metallic structures from corrosion. However they fail to isolate the substrate from corrosive materials present in the…

Abstract

Organic Coatings are used for protection of metallic structures from corrosion. However they fail to isolate the substrate from corrosive materials present in the surroundings because the amount of water absorbed in coatings facilitates the movement of corrosive ions and gases through them, which in turn corrode the metal. The present studies illustrate the relative degree of permeation of chloride ions and water vapour through a variety of alkyd coating formulations.

Details

Anti-Corrosion Methods and Materials, vol. 25 no. 3
Type: Research Article
ISSN: 0003-5599

To view the access options for this content please click here
Article

R. Vittal Rao and M. Yaseen

Organic Coatings are used for protection of metallic structures from corrosion. However they fail to isolate the substrate from corrosive materials present in the…

Abstract

Organic Coatings are used for protection of metallic structures from corrosion. However they fail to isolate the substrate from corrosive materials present in the surroundings because the amount of water absorbed in coatings facilitates the movement of corrosive ions and gases through them, which in turn corrode the metal. The present studies illustrate the relative degree of permeation of chloride ions and water vapour through a variety of alkyd coating formulations.

Details

Pigment & Resin Technology, vol. 7 no. 2
Type: Research Article
ISSN: 0369-9420

To view the access options for this content please click here
Article

H.S. Emira

This work aims to study the corrosion protection of laboratory‐prepared micaceous zinc ferrite (MZF) pigment in anticorrosive paints for steel.

Abstract

Purpose

This work aims to study the corrosion protection of laboratory‐prepared micaceous zinc ferrite (MZF) pigment in anticorrosive paints for steel.

Design/methodology/approach

Acrylic‐modified alkyd coatings, based on MZF pigment, micaceous iron oxide (MIO) and zinc ferrite (ZF) pigments, were prepared at different pigment volume concentrations “PVCs” to the critical pigment volume concentrations “CPVCs” ratio, which denoted hereafter by A. Scanning electron microscope, weight loss measurements, water vapour transmission (WVT) and immersion in 3.5 per cent salt solution as well as physico‐mechanical properties were performed to evaluate the paints anticorrosive performance.

Findings

WVT and corrosion protection can be affected by the PVC/CPVC ratio for all systems. At any particular PVC, the barrier property of the pigment was the main factor affecting the WVT and corrosion protection. MZF pigment protected the carbon steel physically through barrier action and chemically by the reaction with the acidic acrylic‐modified alkyd resin to produce soaps which passivate the substrate.

Originality/value

Novel MZF paint could be used with optimum percentage in anticorrosive paints for steel protection especially in humid and coastal regions.

Details

Anti-Corrosion Methods and Materials, vol. 53 no. 4
Type: Research Article
ISSN: 0003-5599

Keywords

To view the access options for this content please click here
Article

The most important component of a coating is the resin: all other components simply modify the resin. Solvents affect the flow, pigments give decorative effects and aid…

Abstract

The most important component of a coating is the resin: all other components simply modify the resin. Solvents affect the flow, pigments give decorative effects and aid economy; the physical and chemical properties of the resins used are the principal differences in various paint systems

Details

Pigment & Resin Technology, vol. 1 no. 3
Type: Research Article
ISSN: 0369-9420

To view the access options for this content please click here
Article

Hassan Salah Aly Emira, Yosreya Mostafa Abu‐Ayana and Sanaa Mohammad El‐Sawy

The purpose of this paper is to study the corrosion protective properties of modified urea and/or thiourea formaldehyde resins for steel surface.

Abstract

Purpose

The purpose of this paper is to study the corrosion protective properties of modified urea and/or thiourea formaldehyde resins for steel surface.

Design/methodology/approach

Three butyl alcohol modified amino resins were laboratory prepared. The three modified resins were characterized using thermal gravimetric analysis and infrared; the solid content and refractive index of each were also measured.

Findings

The resins that contain both nitrogen and sulphur have excellent corrosion inhibitive activity compared with that containing nitrogen only.

Research limitations/implications

The modified resins were based on urea formaldehyde resin, mixed urea and thiourea formaldehyde resin and thiourea formaldehyde resin, respectively.

Practical implications

The prepared resins were introduced in different coating formulations based on short‐oil alkyd resin, medium‐oil alkyd resin and plasticized chlorinated rubber. They were then tested and evaluated for corrosion protection of steel surfaces.

Originality/value

All the prepared resins show promising results for corrosion protection of steel surfaces.

Details

Pigment & Resin Technology, vol. 42 no. 5
Type: Research Article
ISSN: 0369-9420

Keywords

To view the access options for this content please click here
Article

Seng‐Neon Gan and Kim‐Teck Teo

Reports the effects of composition and curing temperature on the film properties of three water reducible enamels prepared from palm stearin alkyds. The properties studied…

Abstract

Reports the effects of composition and curing temperature on the film properties of three water reducible enamels prepared from palm stearin alkyds. The properties studied were hardness, flexibility, and adhesion. While all the formulations exhibit excellent adhesion, generally increasing the melamine content and curing temperature can increase the hardness but reduce the resistance to cracking and deformation of the coating. Applies Fourier transform infra‐red spectroscopy (FTIR) to the study of the curing reactions. Finds that FTIR is able to identify the predominant cross‐linking reactions.

Details

Pigment & Resin Technology, vol. 28 no. 5
Type: Research Article
ISSN: 0369-9420

Keywords

1 – 10 of 990