Search results

11 – 20 of 92
Article
Publication date: 26 February 2019

Debabrata Dutta and Somnath Ghosh

This paper aims to investigate the effect of delayed water curing on the mechanical and microstructural properties of fly ash-based geopolymer paste-blended with Ground Granulated

Abstract

Purpose

This paper aims to investigate the effect of delayed water curing on the mechanical and microstructural properties of fly ash-based geopolymer paste-blended with Ground Granulated Blast Furnace Slag (GGBS) with different rest periods.

Design/methodology/approach

The blended geopolymer paste was composed of GGBS (15 per cent of the total weight) and the base material, Fly Ash (FA). The blended mix was activated by activator solution (Sodium hydroxide and Sodium silicate) containing 6 per cent Na2O of total base material. The effect of delayed water curing has been studied by gradually increasing the aging period (Rest Period) from 2 hours to 24 hours in the formation of activated outcome along with Calcium Silicate Hydrate (CSH). To analyze the mechanical and microstructural properties of the resultant blended geopolymer paste, compressive strength test, FESEM and XRD have been carried out. Moreover, a long-term durability test subjected to sulphate exposure has been performed to evaluate the durability of the designed sustainable geopolymer paste.

Findings

The present paper shows that the delayed water curing incorporates secondary heat input enhancing the partial polymer formation along with CSH. Slag-blended AAFA-based geopolymer paste is seen to exhibit quick setting property. Also, AAFA-based geopolymer paste samples subjected to longer rest period show early strength gain at a high rate under water curing as compared to those subjected to the shorter rest period.

Originality/value

To the best of authors’ knowledge, the effect of delayed water curing on the mechanical and microstructural properties of slag-blended AAFA-based geopolymer paste has not been studied before.

Details

World Journal of Engineering, vol. 16 no. 1
Type: Research Article
ISSN: 1708-5284

Keywords

Article
Publication date: 14 September 2017

Khalid Al-Gahtani, Ibrahim Alsulaihi, Mohamed Ali and Mohamed Marzouk

The purpose of this paper is to highlight the sustainability benefits of using demolition and industrial wastes as a replacement for aggregates and cement in traditional concrete…

Abstract

Purpose

The purpose of this paper is to highlight the sustainability benefits of using demolition and industrial wastes as a replacement for aggregates and cement in traditional concrete mixes.

Design/methodology/approach

Crushed concrete from demolition sites served as a replacement for fine and coarse aggregate in some of the mixes at various ratios. In addition, ground granulated blast furnace slag, metakaolin, silica fume, and fly ash each served as a cement replacement for cement content in the mixes tested in this research at various rates. Compression strength tests, permeability, and thermal expansion tests were performed on various mixes to compare their performance to that of traditional mixes with natural aggregate, and with no cement replacement.

Findings

The compressive strength results indicated the suitability of using such demolition wastes as replacements in producing green concrete (GC) without hindering its mechanical characteristics significantly. In addition, the results indicated an enhancement in the mechanical characteristics of GC when replacing cement with pozzolanic industrial wastes and byproducts.

Originality/value

The research assesses the utilization of sustainable GC using recycled waste aggregate and byproducts.

Details

Built Environment Project and Asset Management, vol. 7 no. 4
Type: Research Article
ISSN: 2044-124X

Keywords

Article
Publication date: 11 July 2019

Ashok Kumar Sahani, Amiya K. Samanta and Dilip K. Singharoy

Present study focuses on scope of developing sustainable heat resistant concrete by adding steel fibre (Sf) and polypropylene fibre (PPf) along with partially replacement of…

Abstract

Purpose

Present study focuses on scope of developing sustainable heat resistant concrete by adding steel fibre (Sf) and polypropylene fibre (PPf) along with partially replacement of ordinary portland cement (OPC) and natural fine aggregate with fly ash (FA) and granular blast furnace slag (GBFS). Replacement percentages of FA and GBFS were 40% and 50%, whereas Sf and PPf for fibre-added mixes were 1% by volume of concrete and 0.25% by weight of cement, respectively.

Design/methodology/approach

An experimental work had been carried out to make comparison between control mix (CM), fibre-added sustainable mix (SCMF) and fibre-added control mix (CMF) with reference to weight loss, mechanical strength (compressive, split and flexure) after exposed to room temperature (27°C) to 1000°C at the interval of 200°C for 4 h of heat curing followed by furnace cooling and then natural cooling. Furthermore, microstructural analysis was executed at 27°C, 400°C and 800°C, respectively.

Findings

Colour change and hair line cracks were started to appear at 600°C. Fibre-added control mix and sustainable mix did not exhibit any significant cracks as compared to control mix even at 1000°C. Major losses were occurred at temperature higher than 600°C, loss in compressive strength was about 70% in control mix, while 60% in fibre-added mixes. SCMF exhibited the highest retention of strength with respect to all cases of mechanical strength.

Research limitations/implications

Present study is based on the slow heating condition followed by longer duration of heat curing at target temperature.

Practical implications

Present work can be helpful for the design engineer for assessing the fire deterioration of concrete structure existing near the fire establishment such as furnace and ovens. Building fire (high temperature for short duration) might be the further scope of work.

Originality/value

Concept of incorporating pozzolanic binder and calcareous fine aggregate was adopted to take the advantage pozzolanacity and fire resistivity. To the best of author’s knowledge, there is a scope for fill the research gap in this area.

Details

Journal of Structural Fire Engineering, vol. 10 no. 4
Type: Research Article
ISSN: 2040-2317

Keywords

Article
Publication date: 26 December 2023

Manjunatha M. and Kavitha T.S.

The purpose of this study is to investigate the behaviour of M40 grade of self-compacting concrete (SCC) with high volume of ground granulated blast furnace slag (GGBS) (50%) and…

Abstract

Purpose

The purpose of this study is to investigate the behaviour of M40 grade of self-compacting concrete (SCC) with high volume of ground granulated blast furnace slag (GGBS) (50%) and recycled concrete aggregate (RCA) content up to 100% to assess the mechanical properties of SCC. As per guidelines of IS: 383 – 2016, the RCA can be replaced up to 20% of natural coarse aggregate up to M25 grade of concrete. This study assesses the mechanical properties of SCC beyond 20% of RCA content. Based on the experimental investigations, the compressive strength of mixes decreases as the content of RCA increases. It is found that concrete mixes with 20% RCA and shows the maximum compressive strength at 56 days.

Design/methodology/approach

The fresh properties as per EFNARC and IS: 10262–2019 guidelines, ultrasonic pulse velocity testing, mechanical properties and microstructure analysis have been conducted to evaluate the performance of SCC with RCA for practical applications.

Findings

From the experimental investigations, it is found that up to 50% of recycled coarse aggregate can be used for structural applications.

Originality/value

The environmental pollution and dumping of waste on green land can be reduced by effective utilization of recycled coarse aggregate and GGBS in the production of SCC.

Article
Publication date: 12 July 2021

Suresh Kumar Arunachalam, Muthukannan Muthiah, Kanniga Devi Rangaswamy, Arunkumar Kadarkarai and Chithambar Ganesh Arunasankar

Demand for Geopolymer concrete (GPC) has increased recently because of its many benefits, including being environmentally sustainable, extremely tolerant to high temperature and…

Abstract

Purpose

Demand for Geopolymer concrete (GPC) has increased recently because of its many benefits, including being environmentally sustainable, extremely tolerant to high temperature and chemical attacks in more dangerous environments. Like standard concrete, GPC also has low tensile strength and deformation capacity. This paper aims to analyse the utilization of incinerated bio-medical waste ash (IBWA) combined with ground granulated blast furnace slag (GGBS) in reinforced GPC beams and columns. Medical waste was produced in the health-care industry, specifically in hospitals and diagnostic laboratories. GGBS is a form of industrial waste generated by steel factories. The best option to address global warming is to reduce the consumption of Portland cement production and promote other types of cement that were not a pollutant to the environment. Therefore, the replacement in ordinary Portland cement construction with GPC is a promising way of reducing carbon dioxide emissions. GPC was produced due to an alkali-activated polymeric reaction between alumina-silicate source materials and unreacted aggregates and other materials. Industrial pollutants such as fly ash and slag were used as raw materials.

Design/methodology/approach

Laboratory experiments were performed on three different proportions (reinforced cement concrete [RCC], 100% GGBS as an aluminosilicate source material in reinforced geopolymer concrete [GRGPC] and 30% replacement of IBWA as an aluminosilicate source material for GGBS in reinforced geopolymer concrete [IGRGPC]). The cubes and cylinders for these proportions were tested to find their compressive strength and split tensile strength. In addition, beams (deflection factor, ductility factor, flexural strength, degradation of stiffness and toughness index) and columns (load-carrying ability, stress-strain behaviour and load-deflection behaviours) of reinforced geopolymer concrete (RGPC) were studied.

Findings

As shown by the results, compared to Reinforced Cement Concrete (RCC) and 100% GGBS based Reinforced Geopolymer Concrete (GRGPC), 30% IBWA and 70% GGBS based Reinforced Geopolymer Concrete (IGRGPC) (30% IBWA–70% GGBS reinforced geo-polymer concrete) cubes, cylinders, beams and columns exhibit high compressive strength, tensile strength, flexural strength, load-carrying ability, ultimate strength, stiffness, ductility and deformation capacity.

Originality/value

All the results were based on the experiments done in this research. All the result values obtained in this research are higher than the theoretical values.

Details

World Journal of Engineering, vol. 19 no. 6
Type: Research Article
ISSN: 1708-5284

Keywords

Article
Publication date: 15 December 2021

Nivin M. Ahmed, Essam Abdelfattah Mossalam, Basil El-Sabbagh and Eglal M.R. Souaya

This study aims to evaluate the effect of pH on the reinforced concrete steel protection for rebars coated with paint formulations containing talc and free from it. As the…

Abstract

Purpose

This study aims to evaluate the effect of pH on the reinforced concrete steel protection for rebars coated with paint formulations containing talc and free from it. As the presence of talc in paints can offer high pH which cordially affects the protection behavior of the coated rebars. Additionally, this study includes evaluating the durability of concrete mixes in presence of some replacements of ordinary cement such as meta-kaolin (MK) and ground granulated blast furnace slag (GGBFS).

Design/methodology/approach

Two paint formulations were prepared containing the same ingredients except that (P1) is free from talc and (P2) contains talc. The anticorrosive behavior of painted steel in the blended concrete mixes containing MK and GGBFS was studied by using different electrochemical techniques in chloride solution. The concrete durability was evaluated by the means of compressive and bond strength beside chloride permeability. Different concrete mixes containing mineral groups or pozzolanic materials were prepared by replacing (10, and 30%) GGBFS and (5, 10 and 15%) MK as binary from cement CEM I with (w/b) 0.45 with superplasticizer ratio (SP) 2% of the binder

Findings

It was found that the presence of talc, in spite of its ability to offer high pH, has affected positively the corrosion behavior of reinforced concrete steel by forming a complex with concrete even if it is present in paint formulation and not free in the medium.

Originality/value

The results revealed that concrete blended with (30% GGBFS and 10% MK) with coated rebars with P2 containing talc showed the highest corrosion protection performance in addition to modified permeability and compression resistance.

Article
Publication date: 13 October 2020

Zoi G. Ralli and Stavroula J. Pantazopoulou

Important differentiating attributes in the procedures used, the characteristic mineral composition of the binders, and the implications these have on the final long term…

Abstract

Purpose

Important differentiating attributes in the procedures used, the characteristic mineral composition of the binders, and the implications these have on the final long term stability and physico-mechanical performance of the concretes produced are identified and discussed, with the intent to improve transparency and clarity in the field of geopolymer concrete technologies.

Design/methodology/approach

This state-of-the-art review covers the area of geopolymer concrete, a class of sustainable construction materials that use a variety of alternative powders in lieu of cement for composing concrete, most being a combination of industrial by-products and natural resources rich in specific required minerals. It explores extensively the available essential materials for geopolymer concrete and provides a deeper understanding of its underlying chemical mechanisms.

Findings

This is a state-of-the-art review introducing the essential characteristics of alternative powders used in geopolymer binders and the effectiveness these have on material performance.

Practical implications

With the increase of need for alternative cementitious materials, identifying and understanding the critical material components and the effect they may have on the performance of the resulting mixes in fresh as well as hardened state become a critical requirement to for short- and long-term quality control (e.g. flash setting, efflorescence, etc.).

Originality/value

The topic explored is significant in the field of sustainable concrete technologies where there are several parallel but distinct material technologies being developed, such as geopolymer concrete and alkali-activated concrete. Behavioral aspects and results are not directly transferable between the two fields of cementitious materials development, and these differences are explored and detailed in the present study.

Details

International Journal of Structural Integrity, vol. 12 no. 4
Type: Research Article
ISSN: 1757-9864

Keywords

Article
Publication date: 26 April 2023

S.N. Basavana Gowda, Subhash Yaragal, C. Rajasekaran and Sharan Kumar Goudar

In recent years, fire accidents in engineering structures have often been reported worldwide, leading to a severe risk to life and property safety. The present study is carried…

Abstract

Purpose

In recent years, fire accidents in engineering structures have often been reported worldwide, leading to a severe risk to life and property safety. The present study is carried out to evaluate the performance of Ground Granulated Blast Furnace Slag (GGBS) and fly ash–blended laterized mortars at elevated temperatures.

Design/methodology/approach

This test program includes the replacement of natural river sand with lateritic fine aggregates (lateritic FA) in terms of 0, 50 and 100%. Also, the ordinary Portland cement (OPC) was replaced with fly ash and GGBS in terms of 10, 20, 30% and 20, 40 and 60%, respectively, for producing blended mortars.

Findings

This paper presents results related to the determination of residual compressive strengths of lateritic fine aggregates-based cement mortars with part replacement of cement by fly ash and GGBS exposed to elevated temperatures. The effect of elevated temperatures on the physical and mechanical properties was evaluated with the help of microstructure studies and the quantification of hydration products.

Originality/value

A sustainable cement mortar was produced by replacing natural river sand with lateritic fine aggregates. The thermal strength deterioration features were assessed by exposing the control specimens and lateritic fine aggregates-based cement mortars to elevated temperatures. Changes in the mechanical properties were evaluated through a quantitative microstructure study using scanning electron microscopy (SEM) images. The phase change of hydration products after exposure to elevated temperatures was qualitatively analyzed by greyscale thresholding of SEM images using Image J software.

Details

Journal of Structural Fire Engineering, vol. 14 no. 4
Type: Research Article
ISSN: 2040-2317

Keywords

Article
Publication date: 1 June 1955

FOR the past two years work has been progressing steadily on the North of Scotland's Hydro‐Electric Board's project at Glen Moriston, Inverness‐shire, notable in that Trief cement…

Abstract

FOR the past two years work has been progressing steadily on the North of Scotland's Hydro‐Electric Board's project at Glen Moriston, Inverness‐shire, notable in that Trief cement is being used for the construction of two large dams at Loch Cluanie and Loch Loyne. These structures represent the first application in Britain of this new concrete process pioneered by M. Victor Trief, a Belgian. The British licencees are Mitchell Engineering Ltd., who constructed the large plant at Cluanie that produces Trief cement for the Moriston project.

Details

Anti-Corrosion Methods and Materials, vol. 2 no. 6
Type: Research Article
ISSN: 0003-5599

Article
Publication date: 13 May 2014

Marcella Ruschi Mendes Saade, Maristela G. da Silva, Vanessa Gomes, Hawllynsgton Gumez Franco, Dimaghi Schwamback and Blandina Lavor

The purpose of this paper is to propose a set of lifecycle-based indicators to describe material eco-efficiency of buildings normalized per unit of gross floor area (GFA), and at…

Abstract

Purpose

The purpose of this paper is to propose a set of lifecycle-based indicators to describe material eco-efficiency of buildings normalized per unit of gross floor area (GFA), and at verifying feasibility of their calculation for building materials and components, based upon four case studies. The paper also examines the effects that discrepancies between two carbon footprint accounting methods (embodied CO2 (ECO2) vs embodied CO2e) have on communication of environmental performance of selected materials.

Design/methodology/approach

The lifecycle assessments (LCAs) were performed through LCA support platform SimaPro 7.3. Data for materials/components production cycle modeling were collected from primary and secondary data from national literature or adapted from Ecoinvent database. Embodied energy, ECO2, blue water footprint (bWF), non-renewable content and volatile organic compound emissions (VOCe) indicators were calculated from lifecycle inventory (LCI) outputs, while embodied CO2e was calculated using CML 2001 v.2.01 impact assessment method.

Findings

Obtained results suggest that a core database comprised of 12 materials and components – cement, ceramic blocks, steel rebar, sawn timber planks, PVC tubes, plywood, PVC conduits, roof steel structure, roundwood, ceramic tiles, hydrated lime and adhesive mortar – provides a very reasonable description of a building's embodied energy (99.63 percent), embodied CO2e (97.50 percent), bWF (96.26 percent), non-renewable content (97.53 percent) and VOCe (95.38 percent) profiles. Except for bWF of cement and concrete, substantial reductions in the metrics’ values captured environmental advantages of partially substituting ground granulated blast furnace slag (ggbs) for clinker Portland.

Originality/value

The disclosure of embodied energy and carbon, as well as of other environmental performance data at whole-building level (per unit of GFA) pointed out in this paper, allows comparability and helps to establish performance goals and benchmarks and to guide policy decisions. Following a coordinated methodological outline, future works are expected to evolve to gradually constitute a LCI database that enables the use of the proposed metrics and of LCA as decision-making tools in the building sector.

Details

Smart and Sustainable Built Environment, vol. 3 no. 1
Type: Research Article
ISSN: 2046-6099

Keywords

11 – 20 of 92