Search results

1 – 2 of 2
Article
Publication date: 12 July 2021

Suresh Kumar Arunachalam, Muthukannan Muthiah, Kanniga Devi Rangaswamy, Arunkumar Kadarkarai and Chithambar Ganesh Arunasankar

Demand for Geopolymer concrete (GPC) has increased recently because of its many benefits, including being environmentally sustainable, extremely tolerant to high temperature and…

Abstract

Purpose

Demand for Geopolymer concrete (GPC) has increased recently because of its many benefits, including being environmentally sustainable, extremely tolerant to high temperature and chemical attacks in more dangerous environments. Like standard concrete, GPC also has low tensile strength and deformation capacity. This paper aims to analyse the utilization of incinerated bio-medical waste ash (IBWA) combined with ground granulated blast furnace slag (GGBS) in reinforced GPC beams and columns. Medical waste was produced in the health-care industry, specifically in hospitals and diagnostic laboratories. GGBS is a form of industrial waste generated by steel factories. The best option to address global warming is to reduce the consumption of Portland cement production and promote other types of cement that were not a pollutant to the environment. Therefore, the replacement in ordinary Portland cement construction with GPC is a promising way of reducing carbon dioxide emissions. GPC was produced due to an alkali-activated polymeric reaction between alumina-silicate source materials and unreacted aggregates and other materials. Industrial pollutants such as fly ash and slag were used as raw materials.

Design/methodology/approach

Laboratory experiments were performed on three different proportions (reinforced cement concrete [RCC], 100% GGBS as an aluminosilicate source material in reinforced geopolymer concrete [GRGPC] and 30% replacement of IBWA as an aluminosilicate source material for GGBS in reinforced geopolymer concrete [IGRGPC]). The cubes and cylinders for these proportions were tested to find their compressive strength and split tensile strength. In addition, beams (deflection factor, ductility factor, flexural strength, degradation of stiffness and toughness index) and columns (load-carrying ability, stress-strain behaviour and load-deflection behaviours) of reinforced geopolymer concrete (RGPC) were studied.

Findings

As shown by the results, compared to Reinforced Cement Concrete (RCC) and 100% GGBS based Reinforced Geopolymer Concrete (GRGPC), 30% IBWA and 70% GGBS based Reinforced Geopolymer Concrete (IGRGPC) (30% IBWA–70% GGBS reinforced geo-polymer concrete) cubes, cylinders, beams and columns exhibit high compressive strength, tensile strength, flexural strength, load-carrying ability, ultimate strength, stiffness, ductility and deformation capacity.

Originality/value

All the results were based on the experiments done in this research. All the result values obtained in this research are higher than the theoretical values.

Details

World Journal of Engineering, vol. 19 no. 6
Type: Research Article
ISSN: 1708-5284

Keywords

Article
Publication date: 13 June 2016

Vikas Thakur and Ramesh Anbanandam

The World Health Organization identified infectious healthcare waste as a threat to the environment and human health. India’s current medical waste management system has…

1442

Abstract

Purpose

The World Health Organization identified infectious healthcare waste as a threat to the environment and human health. India’s current medical waste management system has limitations, which lead to ineffective and inefficient waste handling practices. Hence, the purpose of this paper is to: first, identify the important barriers that hinder India’s healthcare waste management (HCWM) systems; second, classify operational, tactical and strategical issues to discuss the managerial implications at different management levels; and third, define all barriers into four quadrants depending upon their driving and dependence power.

Design/methodology/approach

India’s HCWM system barriers were identified through the literature, field surveys and brainstorming sessions. Interrelationships among all the barriers were analyzed using interpretive structural modeling (ISM). Fuzzy-Matrice d’Impacts Croisés Multiplication Appliquée á un Classement (MICMAC) analysis was used to classify HCWM barriers into four groups.

Findings

In total, 25 HCWM system barriers were identified and placed in 12 different ISM model hierarchy levels. Fuzzy-MICMAC analysis placed eight barriers in the second quadrant, five in third and 12 in fourth quadrant to define their relative ISM model importance.

Research limitations/implications

The study’s main limitation is that all the barriers were identified through a field survey and barnstorming sessions conducted only in Uttarakhand, Northern State, India. The problems in implementing HCWM practices may differ with the region, hence, the current study needs to be replicated in different Indian states to define the waste disposal strategies for hospitals.

Practical implications

The model will help hospital managers and Pollution Control Boards, to plan their resources accordingly and make policies, targeting key performance areas.

Originality/value

The study is the first attempt to identify India’s HCWM system barriers and prioritize them.

Details

International Journal of Health Care Quality Assurance, vol. 29 no. 5
Type: Research Article
ISSN: 0952-6862

Keywords

1 – 2 of 2