Search results

1 – 10 of over 35000
Article
Publication date: 12 August 2022

Kang Liu, Yingchun Bai, Shouwen Yao and Shenggang Luan

The purpose of this paper is to develop a topology optimization algorithm considering natural frequencies.

Abstract

Purpose

The purpose of this paper is to develop a topology optimization algorithm considering natural frequencies.

Design/methodology/approach

To incorporate natural frequency as design criteria of shell-infill structures, two types of design models are formulated: (1) type I model: frequency objective with mass constraint; (2) type II model: mass objective with frequency constraint. The interpolation functions are constructed by the two-step density filtering approach to describe the fundamental topology of shell-infill structure. Sensitivities of natural frequencies and mass with respect to the original element densities are derived, which will be used for both type I model and type II model. The method of moving asymptotes is used to solve both models in combination with derived sensitivities.

Findings

Mode switching is one of the challenges faced in eigenfrequency optimization problems, which can be overcome by the modal-assurance-criterion-based mode-tracking strategy. Furthermore, a shifting-frequency-constraint strategy is recommended for type II model to deal with the unsatisfactory topology obtained under direct frequency constraint. Numerical examples are systematically investigated to demonstrate the effectiveness of the proposed method.

Originality/value

In this paper, a topology optimization method considering natural frequencies is proposed by the author, which is useful for the design of shell-infill structures to avoid the occurrence of resonance in dynamic conditions.

Details

Engineering Computations, vol. 39 no. 8
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 7 November 2008

Jaime Horta‐Rangel, Socorro Carmona and Victor M. Castaño

Earthquakes can produce important damage in civil infrastructure, including buildings and bridges, representing an important impact on the economy of many countries. The damage is…

Abstract

Purpose

Earthquakes can produce important damage in civil infrastructure, including buildings and bridges, representing an important impact on the economy of many countries. The damage is particularly severe when the dominant frequency of the quake approaches one of the resonant frequencies of the structure. One typical failure occurs through the weakening of some beam‐column joints, generally along with the presence of cracking. The standard procedure for repairing this is by reinforcing the damaged zone with steel plates, sleeves or by means of a new section of reinforced concrete covering the old one. These arrangements change the mechanical stiffness and the mass of the structure itself. Accordingly, this work aims to study these mass and stiffness changes of structures through a non‐linear optimization of the modal analysis of the structure.

Design/methodology/approach

The paper analyzes the potential shifts in natural frequencies of the structure and thus proposes the best conditions under which a damaged bridge could be repaired efficiently.

Findings

In the cases analyzed a similar tendency was observed, namely, that the natural frequencies increase (i.e. diminish their period) with the increase of mass of the bottom columns and with the reduction of the uppers ones. The increase of frequencies by increasing the bottom sections seems to be a viable solution. It is observed that by carrying out the presented procedure it is possible to include more variables, in particular to consider not only the first frequency, but also higher orders.

Research limitations/implications

A purely theoretical approach has been taken in this study.

Originality/value

If confirmed by experimentation this study would have considerable interest to engineers undertaking repair works on earthquake damaged structures.

Details

Structural Survey, vol. 26 no. 5
Type: Research Article
ISSN: 0263-080X

Keywords

Article
Publication date: 3 May 2016

Peyman Rafiee, Golta Khatibi and Francesco Solazzi

The purpose of this study is to address the nonlinear oscillations of single-crystal silicon micro-electromechanical systems (MEMS) accelerometers subjected to mechanical…

Abstract

Purpose

The purpose of this study is to address the nonlinear oscillations of single-crystal silicon micro-electromechanical systems (MEMS) accelerometers subjected to mechanical excitation.

Methodology/approach

The nonlinear behavior was detected and analyzed by using experimental, analytical and numerical approaches. Piezoelectric shaker as a source of mechanical excitation and differential laser Doppler vibrometer in combination with a micro system analyzer were used in the experimental effort. Two types of devices considered included nonencapsulated samples and samples encapsulated in nitrogen gas compressed between two glasses. Numerical and analytical investigations were conducted to analyze the nonlinear response. A novel method has been suggested to calculate the nonlinear parameters. The obtained experimental, numerical and analytical results are in good agreement.

Findings

It has been found that the nonlinearity leads to a shift in frequencies and generates higher harmonics, but, most importantly, reveals new phenomena, such as the jump and instability of the vibration amplitudes and phases.

Originality/value

It has been shown that under the constant excitation force, the MEMS device can work in both linear and nonlinear regions. The role of the beat phenomenon has been also addressed and discussed. It has been found that the attributes of the nonlinear response are strongly dependent on the level and duration of the excitation. It is concluded that the nonlinear response of the systems is strongly dependent on the level of the excitation energy. It has been also concluded that larger quality factors are able to enhance dramatically the nonlinear effects and vice versa.

Details

Microelectronics International, vol. 33 no. 2
Type: Research Article
ISSN: 1356-5362

Keywords

Article
Publication date: 13 August 2024

Bo Wang, Yifeng Yuan, Ke Wang and Shengli Cao

Passive chipless RFID (radio frequency identification) sensors, devoid of batteries or wires for data transmission to a signal reader, demonstrate stability in severe conditions…

Abstract

Purpose

Passive chipless RFID (radio frequency identification) sensors, devoid of batteries or wires for data transmission to a signal reader, demonstrate stability in severe conditions. Consequently, employing these sensors for metal crack detection ensures ease of deployment, longevity and reusability. This study aims to introduce a chipless RFID sensor design tailored for detecting metal cracks, emphasizing tag reusability and prolonged service life.

Design/methodology/approach

The passive RFID sensor is affixed to the surface of the aluminum plate under examination, positioned over the metal cracks. These cracks alter the electrical length of the sensor, thereby influencing its amplitude-frequency characteristics. Hence, the amplitude-frequency profile generated by various metal cracks can effectively ascertain the occurrence and orientation of the cracks.

Findings

Simulation and experimental results show that the proposed crack sensing tag produces different frequency amplitude changes for four directions of cracks and can recognize the crack direction. The sensor has a small size and simple structure, which makes it easy to deploy.

Originality/value

This research aims to deploy crack detection on metallic surfaces using passive chipless RFID sensors, analyze the amplitude-frequency characteristics of crack formation and distinguish cracks of varying widths and orientations. The designed sensor boasts a straightforward structural design, facilitating ease of deployment, and offers a degree of reusability.

Details

Sensor Review, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0260-2288

Keywords

Article
Publication date: 22 August 2023

Yi Xie and Baojin Zheng

This paper aims to apply the novel numerical model to analyze the effect of pillar material on the response of compound quartz crystal resonator (QCR) with an array of pillars…

Abstract

Purpose

This paper aims to apply the novel numerical model to analyze the effect of pillar material on the response of compound quartz crystal resonator (QCR) with an array of pillars. The performance of the proposed device compared to conventional QCR method was also investigated.

Design/methodology/approach

A finite element method model was developed to analyze the behavior of QCR coupled with an array of pillars. The model was composed of an elastic pillar, a solution and a perfectly matched layer. The validation of the model was performed through a comparison between its predictions and previous experimental measurements. Notably, a good agreement was observed between the predicted results and the experimental data.

Findings

The effect of pillar Young’s modulus on the coupled QCR and pillars with a diameter of 20 µm, a center-to-center spacing of 40 µm and a density of 2,500 kg/m3 was investigated. The results indicate that multiple vibration modes can be obtained based on Young’s modulus. Notably, in the case of the QCR–pillar in air, the second vibration mode occurred at a critical Young’s modulus of 0.2 MPa, whereas the first mode was observed at 3.75 Mpa. The vibration phase analysis revealed phase-veering behavior at the critical Young’s modulus, which resulted in a sudden jump-and-drop frequency shift. In addition, the results show that the critical Young’s modulus is dependent on the surrounding environment of the pillar. For instance, the critical Young’s modulus for the first mode of the pillar is approximately 3.75 Mpa in air, whereas it increases to 6.5 Mpa in water.

Originality/value

It was concluded that the performance of coupled QCR–pillar devices significantly depends on the pillar material. Therefore, choosing pillar material at critical Young’s modulus can lead to the maximum frequency shift of coupled QCR–pillar devices. The model developed in this work helps the researchers design pillars to achieve maximum frequency shift in their measurements using coupled QCR–pillar.

Details

World Journal of Engineering, vol. 21 no. 5
Type: Research Article
ISSN: 1708-5284

Keywords

Article
Publication date: 25 January 2011

Anand Y. Joshi, Satish C. Sharma and S.P. Harsha

The purpose of this paper is to explore the use of chiral single‐walled carbon nanotubes (SWCNTs) as mass sensors. Analysis of SWCNT with chiralities is performed using an…

Abstract

Purpose

The purpose of this paper is to explore the use of chiral single‐walled carbon nanotubes (SWCNTs) as mass sensors. Analysis of SWCNT with chiralities is performed using an atomistic finite element model based on a molecular structural mechanics approach.

Design/methodology/approach

The cantilever carbon nanotube (CNT) is modeled by considering it as a space frame structure similar to three‐dimensional beams and point masses. The elastic properties of the beam element are calculated by considering mechanical characteristics of covalent bonds between the carbon atoms in the hexagonal lattice. The mass of each beam element is assumed as point mass at nodes coinciding with carbon atoms. An atomistic simulation approach is used to find the natural frequencies and to study the effects of defect like atomic vacancies in CNTs on the resonant frequency. The migration of the atomic vacancies along the length is observed for different chiralities.

Findings

A reduction in the simulated natural frequency is observed with the maximum value occurring, when the vacancy is found nearer to the fixed end. It is quite evident from the simulation results that the effect of vacancies is significant, and the effect diminishes at 10−2 femtograms mass. Using the higher modes of vibration of SWCNT‐based mass sensors, the amount and the position of the mass on the nanotube can be identified.

Originality/value

CNT have been used as mass sensors extensively. The present approach is focused to explore the use of chiral SWCNT as sensing device with vacancy defect in it. The variation of the atomic vacancies in CNT along the length has been taken and is analyzed for different chiralities. The effects of defect like atomic vacancies in CNTs on the resonant frequency have been analyzed and observed that the maximum reduction in natural frequency occurs when the vacancy is found nearer to the fixed end due to large stiffness variation.

Details

Sensor Review, vol. 31 no. 1
Type: Research Article
ISSN: 0260-2288

Keywords

Article
Publication date: 23 July 2019

Yacong Wu, Jun Huang, Mingxu Yi and Chaopu Zhang

The purpose of this paper is to introduce the theoretical basis of N-order spectral spreading-compressing (SSC) frequency shift interference algorithm and expand it to active…

Abstract

Purpose

The purpose of this paper is to introduce the theoretical basis of N-order spectral spreading-compressing (SSC) frequency shift interference algorithm and expand it to active cancellation. An active cancellation simulation and verification system based on N-order SSC algorithm is established and carried out; simultaneously, the absorbing material coating stealth simulation of two kinds of thickness is carried out to compare the stealth effect with active cancellation system.

Design/methodology/approach

The active cancellation method based on N-order SSC algorithm is proposed based on theoretical formula derivation; the active cancellation simulation and verification system is established in MATLAB/Simulink. The full-size model is built by CATIA and meshed by hypermesh. The omnidirectional radar cross section (RCS) is calculated in cadFEKO, and the results are analyzed in postFEKO.

Findings

The simulations are implemented on a stealth fighter, and results show that after active cancellation, the peak of spectrum analyzer has reduced in all azimuths, the omnidirectional RCS has also decreased and the detection probability of almost all azimuths has dropped under 50 per cent. The absorbing material coating stealth simulations of two kinds of thickness are carried out, and results show that the stealth effect of active cancellation is much better than absorbing material coating.

Practical implications

An active cancellation system based on SSC algorithm is proposed in this paper, and the effect of active cancellation is verified and compared with that of absorbing materials. A new method for the current active stealth is provided in this paper.

Originality/value

Active cancellation simulation and verification system is established. RCS calculation module, signal-to-noise-ratio (SNR) calculation module and detection probability module are built to verify the effect of active cancellation system. Simultaneously, the absorbing material coating stealth simulation is carried out, and the stealth effect of absorbing material coating and active cancellation are compared and analyzed.

Details

Aircraft Engineering and Aerospace Technology, vol. 91 no. 7
Type: Research Article
ISSN: 1748-8842

Keywords

Article
Publication date: 10 August 2015

Rajendran Selvamani and Palaniyandi Ponnusamy

The purpose of this paper is to study the wave propagation in a generalized piezothermoelastic rotating bar of circular cross-section using three-dimensional linear theory of…

Abstract

Purpose

The purpose of this paper is to study the wave propagation in a generalized piezothermoelastic rotating bar of circular cross-section using three-dimensional linear theory of elasticity.

Design/methodology/approach

A mathematical model is developed to study the wave propagation in a generalized piezothermelastic rotating bar of circular cross-section by using Lord-Shulman (LS) and Green-Lindsay (GL) theory of thermoelasticity. After developing the formal solution of the mathematical model consisting of partial differential equations, the frequency equations have been derived by using the thermally insulated/isothermal and electrically shorted/charge free boundary conditions prevailing at the surface of the circular cross-sectional bar. The roots of the frequency equation are obtained by using the secant method, applicable for complex roots.

Findings

In order to include the time requirement for the acceleration of the heat flow and the coupling between the temperature and strain fields, the analytical terms have been derived for the non-classical thermo-elastic theories, LS and GL theory. The computed physical quantities such as thermo-mechanical coupling, electro-mechanical coupling, frequency shift, specific loss and frequency have been presented in the form of dispersion curves. From the graphical patterns of the structure, the effect of thermal relaxation times and the rotational speed as well as the anisotropy of the of the material on the various considered wave characteristics is more significant and dominant in the flexural modes of vibration. The effect of such physical quantities provides the foundation for the construction of temperature sensors, acoustic sensor and rotating gyroscope.

Originality/value

In this paper, the influence of thermal relaxation times and rotational speed on the wave number with thermo-mechanical coupling, electro-mechanical coupling, frequency shift, specific loss and frequency has been observed and are presented as dispersion curves. The effect of thermal relaxation time and rotational speed on wave number for the case of generalized piezothermoelastic material of circular cross-section was never reported in the literature. These results are new and original.

Details

Multidiscipline Modeling in Materials and Structures, vol. 11 no. 2
Type: Research Article
ISSN: 1573-6105

Keywords

Article
Publication date: 17 December 2018

A. Vivek, K. Shambavi and Zachariah C. Alex

This paper aims to focus on research work related to metamaterial-based sensors for material characterization that have been developed for past ten years. A decade of research on…

1426

Abstract

Purpose

This paper aims to focus on research work related to metamaterial-based sensors for material characterization that have been developed for past ten years. A decade of research on metamaterial for sensing application has led to the advancement of compact and improved sensors.

Design/methodology/approach

In this study, relevant research papers on metamaterial sensors for material characterization published in reputed journals during the period 2007-2018 were reviewed, particularly focusing on shape, size and nature of materials characterized. Each sensor with its design and performance parameters have been summarized and discussed here.

Findings

As metamaterial structures are excited by electromagnetic wave interaction, sensing application throughout electromagnetic spectrum is possible. Recent advancement in fabrication techniques and improvement in metamaterial structures have led to the development of compact, label free and reversible sensors with high sensitivity.

Originality/value

The paper provides useful information on the development of metamaterial sensors for material characterization.

Details

Sensor Review, vol. 39 no. 3
Type: Research Article
ISSN: 0260-2288

Keywords

Article
Publication date: 17 September 2018

Ionut Nicolae, Dana Miu and Cristian Viespe

The detection of H2 concentrations in concentrations undetectable by the conventional detection method of surface acoustic wave (SAW) sensors based on frequency shift, by…

Abstract

Purpose

The detection of H2 concentrations in concentrations undetectable by the conventional detection method of surface acoustic wave (SAW) sensors based on frequency shift, by correlating analyte presence with Fourier spectra components.

Design/methodology/approach

Fast Fourier Transform (FFT) and autocorrelation analysis of phase noise in a SnO2-coated SAW sensor was performed. Fourier spectra were obtained by FFT from the SAW sensor resonance frequency instability, in the absence of analyte, and for H2 concentrations between 0.08 and 0.4 per cent.

Findings

All analyte concentrations are below the sensor limit of detection, which is 0.8 per cent for H2. Although these analyte concentrations caused no significant change in the resonance frequency of the SAW resonator, the FFT spectra presented several modifications, namely, the appearance of a new peak and the decrease of randomness. The authors consider that the effect is because of the chaotic behavior of the temporal dependence of the SAW resonance frequency. This explanation is substantiated by the decrease observed in the SAW oscillator autocorrelation function, which is an indication for a chaotic behavior.

Practical implications

As chaotic systems are extremely sensitive to perturbation, measurement methods based on chaos diagnosis could potentially greatly improve the SAW detection.

Originality/value

Fourier spectra components were correlated with analyte presence in concentrations undetectable by the conventional SAW detection method based on frequency shift.

Details

Sensor Review, vol. 39 no. 2
Type: Research Article
ISSN: 0260-2288

Keywords

1 – 10 of over 35000