Search results

1 – 10 of 120
Article
Publication date: 3 January 2017

Peyman Rafiee, Golta Khatibi and Michael Zehetbauer

The purpose of this paper is to provide an overview of the major reliability issues of microelectromechanical systems (MEMS) under mechanical and environmental loading conditions…

1024

Abstract

Purpose

The purpose of this paper is to provide an overview of the major reliability issues of microelectromechanical systems (MEMS) under mechanical and environmental loading conditions. Furthermore, a comprehensive study on the nonlinear behavior of silicon MEMS devices is presented and different aspects of this phenomenon are discussed.

Design/methodology/approach

Regarding the reliability investigations, the most important failure aspects affecting the proper operation of the MEMS components with focus on those caused by environmental and mechanical loads are reviewed. These studies include failures due to fatigue loads, mechanical vibration, mechanical shock, humidity, temperature and particulate contamination. In addition, the influence of squeeze film air damping on the dynamic response of MEMS devices is briefly discussed. A further subject of this paper is discussion of studies on the nonlinearity of silicon MEMS. For this purpose, after a description of the basic principles of nonlinearity, the consequences of nonlinear phenomena such as frequency shift, hysteresis and harmonic generation and their effects on the device performance are reviewed. Special attention is paid to the mode coupling effect between the resonant modes as a result of energy transfer because of the nonlinearity of silicon. For a better understanding of these effects, the nonlinear behavior of silicon is demonstrated by using the example of Si cantilever beams.

Findings

It is shown that environmental and mechanical loads can influence on proper operation of the MEMS components and lead to early fracture. In addition, it is demonstrated that nonlinearity modifies dynamic response and leads to new phenomena such as frequency shift and mode coupling. Finally, some ideas are given as possible future areas of research works.

Originality/value

This is a review paper and aimed to review the latest manuscripts published in the field of reliability and nonlinearity of the MEMS structures.

Details

Microelectronics International, vol. 34 no. 1
Type: Research Article
ISSN: 1356-5362

Keywords

Article
Publication date: 3 May 2016

Peyman Rafiee, Golta Khatibi and Francesco Solazzi

The purpose of this study is to address the nonlinear oscillations of single-crystal silicon micro-electromechanical systems (MEMS) accelerometers subjected to mechanical…

Abstract

Purpose

The purpose of this study is to address the nonlinear oscillations of single-crystal silicon micro-electromechanical systems (MEMS) accelerometers subjected to mechanical excitation.

Methodology/approach

The nonlinear behavior was detected and analyzed by using experimental, analytical and numerical approaches. Piezoelectric shaker as a source of mechanical excitation and differential laser Doppler vibrometer in combination with a micro system analyzer were used in the experimental effort. Two types of devices considered included nonencapsulated samples and samples encapsulated in nitrogen gas compressed between two glasses. Numerical and analytical investigations were conducted to analyze the nonlinear response. A novel method has been suggested to calculate the nonlinear parameters. The obtained experimental, numerical and analytical results are in good agreement.

Findings

It has been found that the nonlinearity leads to a shift in frequencies and generates higher harmonics, but, most importantly, reveals new phenomena, such as the jump and instability of the vibration amplitudes and phases.

Originality/value

It has been shown that under the constant excitation force, the MEMS device can work in both linear and nonlinear regions. The role of the beat phenomenon has been also addressed and discussed. It has been found that the attributes of the nonlinear response are strongly dependent on the level and duration of the excitation. It is concluded that the nonlinear response of the systems is strongly dependent on the level of the excitation energy. It has been also concluded that larger quality factors are able to enhance dramatically the nonlinear effects and vice versa.

Details

Microelectronics International, vol. 33 no. 2
Type: Research Article
ISSN: 1356-5362

Keywords

Article
Publication date: 1 July 2006

Robert Bogue

To give a background to the automotive sensor industry and consider recent developments in sensors used in vehicle safety systems.

1375

Abstract

Purpose

To give a background to the automotive sensor industry and consider recent developments in sensors used in vehicle safety systems.

Design/methodology/approach

This paper describes the early development of the automotive sensor industry and gives examples of present‐day applications. It subsequently discusses development in advanced vehicle safety systems.

Findings

The advent of cost‐effective electronics in 1970 led to the development of numerous automotive systems such as electronic engine management which use a diversity of sensors. Since, the 1990s, safety has emerged as a major consideration and features such as traction control, ABS, stability control systems and air bags have been applied across a wide sector of the industry. New active safety systems which respond to passenger weight and position, as well as collision avoidance systems which can sense the vehicle's external environment are being developed and applied widely. These are fuelling the automotive sensor market which is forecast to reach 2.24 billion units per annum by 2010.Safety system integration is a major theme of present developments.

Originality/value

This paper shows that customer demands for enhanced safety have driven the development and rapid adoption of advanced vehicle safety systems. This has boosted the markets for automotive sensors.

Details

Sensor Review, vol. 26 no. 3
Type: Research Article
ISSN: 0260-2288

Keywords

Content available
Article
Publication date: 1 May 2006

153

Abstract

Details

Aircraft Engineering and Aerospace Technology, vol. 78 no. 3
Type: Research Article
ISSN: 0002-2667

Keywords

Article
Publication date: 29 April 2020

Zoheir Kordrostami, Kourosh Hassanli and Amir Akbarian

The purpose of this study is to find a new design that can increase the sensitivity of the sensor without sacrificing the linearity. A novel and very efficient method for…

Abstract

Purpose

The purpose of this study is to find a new design that can increase the sensitivity of the sensor without sacrificing the linearity. A novel and very efficient method for increasing the sensitivity of MEMS pressure sensor has been proposed for the first time. Rather than perforation, we propose patterned thinning of the diaphragm so that specific regions on it are thinner. This method allows the diaphragm to deflect more in response with regard to the pressure. The best excavation depth has been calculated and a pressure sensor with an optimal pattern for thinned regions has been designed. Compared to the perforated diaphragm with the same pattern, larger output voltage is achieved for the proposed sensor. Unlike the perforations that have to be near the edges of the diaphragm, it is possible for the thin regions to be placed around the center of the diaphragm. This significantly increases the sensitivity of the sensor. In our designation, we have reached a 60 per cent thinning (of the diaphragm area) while perforations larger than 40 per cent degrade the operation of the sensor. The proposed method is applicable to other MEMS sensors and actuators and improves their ultimate performance.

Design/methodology/approach

Instead of perforating the diaphragm, we propose a patterned thinning scheme which improves the sensor performance.

Findings

By using thinned regions on the diaphragm rather than perforations, the sensitivity of the sensor was improved. The simulation results show that the proposed design provides larger membrane deflections and higher output voltages compared to the pressure sensors with a normal or perforated diaphragm.

Originality/value

The proposed MEMS piezoelectric pressure sensor for the first time takes advantage of thinned diaphragm with optimum pattern of thinned regions, larger outputs and larger sensitivity compared with the simple or perforated diaphragm pressure sensors.

Details

Microelectronics International, vol. 37 no. 3
Type: Research Article
ISSN: 1356-5362

Keywords

Content available
Article
Publication date: 29 June 2010

Yan Yu

49

Abstract

Details

Sensor Review, vol. 30 no. 3
Type: Research Article
ISSN: 0260-2288

Content available
Article
Publication date: 1 June 2003

104

Abstract

Details

Aircraft Engineering and Aerospace Technology, vol. 75 no. 3
Type: Research Article
ISSN: 0002-2667

Article
Publication date: 26 June 2019

Pavel Baranov, Tamara Nesterenko, Evgenii Barbin, Aleksej Koleda, Shuji Tanaka, Takashiro Tsukamoto, Ivan Kulinich, Dmitry Zykov and Alexander Shelupanov

Technological capabilities of manufacturing microelectromechanical system (MEMS) gyroscopes are still insufficient if compared to manufacturing high-efficient gyroscopes and…

349

Abstract

Purpose

Technological capabilities of manufacturing microelectromechanical system (MEMS) gyroscopes are still insufficient if compared to manufacturing high-efficient gyroscopes and accelerometers. This creates weaknesses in their mechanical structure and restrictions in the measurement accuracy, stability and reliability of MEMS gyroscopes and accelerometers. This paper aims to develop a new architectural solutions for optimization of MEMS gyroscopes and accelerometers and propose a multi-axis MEMS inertial module combining the functions of gyroscope and accelerometer.

Design/methodology/approach

The finite element modeling (FEM) and the modal analysis in FEM are used for sensing, drive and control electrode capacitances of the multi-axis MEMS inertial module with the proposed new architecture. The description is given to its step-by-step process of manufacturing. Algorithms are developed to detect its angular rates and linear acceleration along three Cartesian axes.

Findings

Experimental results are obtained for eigenfrequencies and capacitances of sensing, drive and control electrodes for 50 manufactured prototypes of the silicon electromechanical sensor (SES). For 42 SES prototypes, a good match is observed between the calculated and simulated capacitance values of comb electrodes. Thus, the mean-square deviation is not over 20 per cent. The maximum difference between the calculated and simulated eigenfrequencies in the drive channel of 11 SES prototypes is not over 3 per cent. The same difference is detected for eigenfrequencies in the first sensing channel of 17 SES prototypes.

Originality/value

This study shows a way to design and optimize the structure and theoretical background for the development of the MEMS inertial module combining the functions of gyroscope and accelerometer. The obtained results will improve and expand the manufacturing technology of MEMS gyroscopes and accelerometers.

Details

Sensor Review, vol. 39 no. 5
Type: Research Article
ISSN: 0260-2288

Keywords

Article
Publication date: 25 September 2009

Robert Bogue

The purpose of this paper is to provide a technical review of silicon micro‐electromechanical systems (MEMS) technology and its applications.

7754

Abstract

Purpose

The purpose of this paper is to provide a technical review of silicon micro‐electromechanical systems (MEMS) technology and its applications.

Design/methodology/approach

Following an introduction, the paper describes silicon MEMS fabrication and assembly techniques, considers a selection of commercially important products and their applications and concludes with a brief review of power MEMS research.

Findings

Silicon MEMS fabrication technology is derived from techniques used in semiconductor manufacture and has yielded a diverse and ever‐growing range of sensors, actuators and other miniaturised devices that find applications in a multitude of industries.

Originality/value

This paper provides a detailed technical review of MEMS technology and its applications.

Details

Assembly Automation, vol. 29 no. 4
Type: Research Article
ISSN: 0144-5154

Keywords

Article
Publication date: 24 May 2013

Gilad Sharon, Rachel Oberc and Donald Barker

The development of micro‐electro‐mechanical systems (MEMS) for use in military and consumer electronics necessitates an analysis of MEMS component reliability. The understanding…

Abstract

Purpose

The development of micro‐electro‐mechanical systems (MEMS) for use in military and consumer electronics necessitates an analysis of MEMS component reliability. The understanding of the reliability characteristics of SCSi within MEMS structures should be improved to advance MEMS applications. Reliability assessments of MEMS technology may be used to conduct virtual qualification of these devices more efficiently. The purpose of this paper is to create a simple, inexpensive test methodology to use the dynamic fracture strength of a MEMS device to predict its reliability, and to verify this method through experimentation.

Design/methodology/approach

The dynamic fracture strength of single crystal silicon (SCSi) was used to model MEMS devices subjected to high shock loading. Experimentation with SCSi MEMS structures was performed following the proposed test methodology. A probabilistic distribution for bending of Deep Reactive Ion Etching (DRIE) processed SCSi around the <110> directions was generated as a tool for assessing product reliability.

Findings

Post shock test inspections revealed that failures occurred along {111} planes. Additional experiments provided preliminary estimates of the fracture strength for bending of DRIE processed SCSi around the <100> directions in excess of 1.1 GPa.

Originality/value

This paper proposes a test methodology for an efficient method to assess the reliability of processed SCSi based on dynamic fracture strength.

Details

International Journal of Structural Integrity, vol. 4 no. 2
Type: Research Article
ISSN: 1757-9864

Keywords

1 – 10 of 120