Search results

1 – 10 of 15
Article
Publication date: 23 September 2020

H. Waqas, M. Imran, Taseer Muhammad, Sadiq M. Sait and R. Ellahi

The purpose of this study is to discuss the Darcy–Forchheimer nanoliquid bio-convection flow by stretching cylinder/plate with modified heat and mass fluxes, activation energy and…

Abstract

Purpose

The purpose of this study is to discuss the Darcy–Forchheimer nanoliquid bio-convection flow by stretching cylinder/plate with modified heat and mass fluxes, activation energy and gyrotactic motile microorganism features.

Design/methodology/approach

The proposed flow model is based on flow rate, temperature of nanomaterials, volume fraction of nanoparticles and gyrotactic motile microorganisms. Heat and mass transport of nanoliquid is captured by the usage of popular Buongiorno relation, which allows us to evaluate novel characteristics of thermophoresis diffusion and Brownian movement. Additionally, Wu’s slip (second-order slip) mechanisms with double stratification are incorporated. For numerical and graphical results, the built-in bvp4c technique in computational software MATLAB along with shooting technique is used.

Findings

The influence of key elements is illustrated pictorially. Velocity decays for higher magnitude of first- and second-order velocity slips and bioconvection Rayleigh number. The velocity of fluid has an inverse relation with mixed convection parameter and local inertia coefficient. Temperature field enhances with the increase in estimation of thermal stratification Biot number and radiation parameter. A similar situation for concentration field is observed for mixed convection parameter and concentration relaxation parameter. Microorganism concentration profile decreases for higher values of bioconvection Lewis number and Peclet number. A detail discussion is given to see how the graphical aspects justify the physical ones.

Originality/value

To the best of the authors’ knowledge, original research work is not yet available in existing literature.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 31 no. 5
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 10 August 2015

Rajendran Selvamani and Palaniyandi Ponnusamy

The purpose of this paper is to study the wave propagation in a generalized piezothermoelastic rotating bar of circular cross-section using three-dimensional linear theory of…

Abstract

Purpose

The purpose of this paper is to study the wave propagation in a generalized piezothermoelastic rotating bar of circular cross-section using three-dimensional linear theory of elasticity.

Design/methodology/approach

A mathematical model is developed to study the wave propagation in a generalized piezothermelastic rotating bar of circular cross-section by using Lord-Shulman (LS) and Green-Lindsay (GL) theory of thermoelasticity. After developing the formal solution of the mathematical model consisting of partial differential equations, the frequency equations have been derived by using the thermally insulated/isothermal and electrically shorted/charge free boundary conditions prevailing at the surface of the circular cross-sectional bar. The roots of the frequency equation are obtained by using the secant method, applicable for complex roots.

Findings

In order to include the time requirement for the acceleration of the heat flow and the coupling between the temperature and strain fields, the analytical terms have been derived for the non-classical thermo-elastic theories, LS and GL theory. The computed physical quantities such as thermo-mechanical coupling, electro-mechanical coupling, frequency shift, specific loss and frequency have been presented in the form of dispersion curves. From the graphical patterns of the structure, the effect of thermal relaxation times and the rotational speed as well as the anisotropy of the of the material on the various considered wave characteristics is more significant and dominant in the flexural modes of vibration. The effect of such physical quantities provides the foundation for the construction of temperature sensors, acoustic sensor and rotating gyroscope.

Originality/value

In this paper, the influence of thermal relaxation times and rotational speed on the wave number with thermo-mechanical coupling, electro-mechanical coupling, frequency shift, specific loss and frequency has been observed and are presented as dispersion curves. The effect of thermal relaxation time and rotational speed on wave number for the case of generalized piezothermoelastic material of circular cross-section was never reported in the literature. These results are new and original.

Details

Multidiscipline Modeling in Materials and Structures, vol. 11 no. 2
Type: Research Article
ISSN: 1573-6105

Keywords

Article
Publication date: 27 September 2011

P. Ponnusamy

The purpose of this paper is to study the wave propagation in a homogeneous isotropic, thermo‐elastic plate of arbitrary cross‐sections using the two‐dimensional theory of…

Abstract

Purpose

The purpose of this paper is to study the wave propagation in a homogeneous isotropic, thermo‐elastic plate of arbitrary cross‐sections using the two‐dimensional theory of thermo‐elasticity.

Design/methodology/approach

A mathematical model is developed to study the wave propagation in an arbitrary cross‐sectional thermo‐elastic plate by using two‐dimensional theory of thermo‐elasticity. After developing the formal solution of the mathematical model consisting of partial differential equations, the frequency equations have been derived by using the boundary conditions prevailing at the arbitrary cross‐sectional surface of the plate for symmetric and antisymmetrical modes in completely separate forms using Fourier expansion collocation method. The roots of the frequency equation are obtained by using the secant method, applicable for complex roots.

Findings

The computed non‐dimensional frequencies are compared with those results available in the literature in the case of elliptic cross‐sectional solid plate with clamped edges without thermal field and this result is coincide with the results of Nagaya. The computed non‐dimensional frequencies are plotted in the form of dispersion curves for longitudinal and flexural (symmetric and antisymmetric) modes of vibrations for the material copper.

Originality/value

The wave propagation in a plate of arbitrary cross‐sections with the stress free (unclamped) and rigidly fixed (clamped) edges are analyzed with and without thermal field.

Details

Multidiscipline Modeling in Materials and Structures, vol. 7 no. 3
Type: Research Article
ISSN: 1573-6105

Keywords

Article
Publication date: 4 November 2014

Palaniyandi Ponnusamy

The purpose of this paper is to study the problem of wave propagation in an infinite, homogeneous, transversely isotropic thermo-piezoelectric solid bar of polygonal (triangle…

Abstract

Purpose

The purpose of this paper is to study the problem of wave propagation in an infinite, homogeneous, transversely isotropic thermo-piezoelectric solid bar of polygonal (triangle, square, pentagon and hexagon) cross-section immersed in fluid is using Fourier expansion collocation method, with in the frame work of linearized, three-dimensional theory of thermo-piezoelectricity.

Design/methodology/approach

A mathematical model is developed to study the wave propagation in an infinite, homogeneous, transversely isotropic thermo-piezoelectric solid bar of polygonal cross-sections immersed in fluid is studied using the three-dimensional theory of elasticity. Three displacement potential functions are introduced, to uncouple the equations of motion and the heat and electric conductions. The frequency equations are obtained for longitudinal and flexural (symmetric and antisymmetric) modes of vibration and are studied numerically for triangular, square, pentagonal and hexagonal cross-sectional bar immersed in fluid. Since the boundary is irregular in shape; it is difficult to satisfy the boundary conditions along the curved surface of the polygonal bar directly. Hence, the Fourier expansion collocation method is applied along the boundary to satisfy the boundary conditions. The roots of the frequency equations are obtained by using the secant method, applicable for complex roots.

Findings

From the literature survey, it is clear that the free vibration of an infinite, homogeneous, transversely isotropic thermo-piezoelectric solid bar of polygonal cross-sectional bar immersed in fluid have not been analyzed by any of the researchers, also the previous investigations in the vibration problems of transversely isotropic thermo-piezoelectric solid bar of circular cross-sections only. So, in this paper, the wave propagation in thermo-piezoelectric cylindrical bar of polygonal cross-sections immersed in fluid are studied using the Fourier expansion collocation method. The computed non-dimensional frequencies are plotted in the form of dispersion curves and its characteristics are discussed, also a comparison is made between non-dimensional wave numbers for longitudinal and flexural modes piezoelectric, thermo-piezoelectric and thermo-piezoelectric polygonal cross-sectional bars immersed in fluid.

Research limitations/implications

Wave propagation in an infinite, homogeneous, transversely isotropic thermo-piezoelectric solid bar of polygonal cross-sectional bar immersed in fluid have not been analyzed by any of the researchers, also the previous investigations in the vibration problems of transversely isotropic thermo-piezoelectric solid bar of circular cross-sections only. So, in this paper, the wave propagation in thermo-piezoelectric cylindrical bar of polygonal cross-sections immersed in fluid are studied using the Fourier expansion collocation method. The computed non-dimensional frequencies are plotted in the form of dispersion curves and its characteristics are discussed, also a comparison is made between non-dimensional wave numbers for longitudinal and flexural modes of piezoelectric, thermo-piezoelectric and thermo-piezoelectric polygonal cross-sectional bars immersed in fluid.

Originality/value

The researchers have discussed the wave propagation in thermo-piezoelectric circular cylinders using three-dimensional theory of thermo-piezoelectricity, but, the researchers did not analyzed the wave propagation in an arbitrary/polygonal cross-sectional bar immersed in fluid. So, the author has studied the free vibration analysis of thermo-piezoelectric polygonal (triangle, square, pentagon and hexagon) cross-sectional bar immersed in fluid using three-dimensional theory elasticity. The problem may be extended to any kinds of cross-sections by using the proper geometrical relations.

Details

Multidiscipline Modeling in Materials and Structures, vol. 10 no. 4
Type: Research Article
ISSN: 1573-6105

Keywords

Article
Publication date: 1 March 1984

F.N. Sinnadurai and D.J. Small

Following extensive studies that demonstrated that some types of plastic encapsulation can be used in high reliability environments, the EPIC chip carrier was conceived and…

Abstract

Following extensive studies that demonstrated that some types of plastic encapsulation can be used in high reliability environments, the EPIC chip carrier was conceived and developed as a cost‐effective micropackage for ICs. The EPIC chip carrier is manufactured by adaptations of PCB techniques with metallisation suitable for auto‐wire bonding. It is a low‐cost alternative to the ceramic chip carrier, but with a much better electrical performance, derived from lower parasitics of the materials employed. Reliability studies have confirmed the suitability of the EPIC for 20 year life operations to which an added benefit is the avoidance of TCE mismatch problems sometimes obtained with ceramic chip carriers on PCBs.

Details

Circuit World, vol. 10 no. 4
Type: Research Article
ISSN: 0305-6120

Article
Publication date: 21 June 2013

P. Ponnusamy

This paper aims to describe the method for solving vibration problem of electro‐magneto‐elastic plate of polygonal (triangle, square, pentagon and hexagon) cross‐sections using…

Abstract

Purpose

This paper aims to describe the method for solving vibration problem of electro‐magneto‐elastic plate of polygonal (triangle, square, pentagon and hexagon) cross‐sections using Fourier expansion collocation method (FECM).

Design/methodology/approach

A mathematical model is developed to study the wave propagation in an electro‐magneto‐elastic plate of polygonal cross‐sections using the theory of elasticity. The frequency equations are obtained from the arbitrary cross‐sectional boundary conditions, since the boundary is irregular in shape; it is difficult to satisfy the boundary conditions along the surface of the plate directly. Hence, the FECM is applied along the boundary to satisfy the boundary conditions. The roots of the frequency equations are obtained by using the secant method, applicable for complex roots.

Findings

From the literature survey, it is clear that the free vibration of electro‐magneto‐elastic plate of polygonal cross‐sections have not been analyzed by any of the researchers, also the previous investigations in the vibration problems of electro‐magneto‐elastic plates are based on the traditional circular cross‐sections only. So, in this paper, the wave propagation in electro‐magneto‐elastic plate of polygonal cross‐sections is studied using the FECM. The computed non‐dimensional frequencies are plotted in the form of dispersion curves and their characteristics are discussed.

Originality/value

The researchers have discussed the circular, rectangular, triangular and square cross‐sectional plates by the boundary conditions. In this problem, the author studied the vibrations of polygonal (triangle, square, pentagon and hexagon) cross‐sectional plates using the geometrical relation which is applicable to all the cross‐sections. The problem may be extended to any kinds of cross‐sections by using the proper geometrical relations.

Article
Publication date: 4 August 2021

Habeeb Mousa and Kasif Teker

The purpose of this study is to present a systematic investigation of the effect of high temperatures on transport characteristics of nitrogen-doped silicon carbide nanowire-based…

Abstract

Purpose

The purpose of this study is to present a systematic investigation of the effect of high temperatures on transport characteristics of nitrogen-doped silicon carbide nanowire-based field-effect transistor (SiC-NWFET). The 3C-SiC nanowires can endure high-temperature environments due to their wide bandgap, high thermal conductivity and outstanding physical and chemical properties.

Design/methodology/approach

The metal-organic chemical vapor deposition process was used to synthesize in-situ nitrogen-doped SiC nanowires on SiO2/Si substrate. To fabricate the proposed SiC-NWFET device, the dielectrophoresis method was used to integrate the grown nanowires on the surface of pre-patterned electrodes onto the SiO2 layer on a highly doped Si substrate. The transport properties of the fabricated device were evaluated at various temperatures ranging from 25°C to 350°C.

Findings

The SiC-NWFET device demonstrated an increase in conductance (from 0.43 mS to 1.2 mS) after applying a temperature of 150°C, and then a decrease in conductance (from 1.2 mS to 0.3 mS) with increasing the temperature to 350°C. The increase in conductance can be attributed to the thermionic emission and tunneling mechanisms, while the decrease can be attributed to the phonon scattering. Additionally, the device revealed high electron and hole mobilities, as well as very low resistivity values at both room temperature and high temperatures.

Originality/value

High-temperature transport properties (above 300°C) of 3C-SiC nanowires have not been reported yet. The SiC-NWFET demonstrates a high transconductance, high electron and hole mobilities, very low resistivity, as well as good stability at high temperatures. Therefore, this study could offer solutions not only for high-power but also for low-power circuit and sensing applications in high-temperature environments (∼350°C).

Article
Publication date: 12 February 2018

Rajendran Selvamani

This study aims to construct a mathematical model to study the dispersion analysis of magneto-electro elastic plate of arbitrary cross sections immersed in fluid by using the…

Abstract

Purpose

This study aims to construct a mathematical model to study the dispersion analysis of magneto-electro elastic plate of arbitrary cross sections immersed in fluid by using the Fourier expansion collocation method (FECM).

Design/methodology/approach

The analytical formulation of the problem is designed and developed using three-dimensional linear elasticity theories. As the inner and outer boundaries of the arbitrary cross-sectional plate are irregular, the frequency equations are obtained from the arbitrary cross-sectional boundary conditions by using FECM. The roots of the frequency equation are obtained using the secant method, which is applicable for complex solutions.

Findings

The computed physical quantities such as radial stress, hoop strain, non-dimensional frequency, magnetic potential and electric potential are plotted in the form of dispersion curves, and their characteristics are discussed. To study the convergence, the non-dimensional wave numbers of longitudinal modes of arbitrary (elliptic and cardioid) cross-sectional plates are obtained using FECM and finite element method and are presented in a tabular form. This result can be applied for optimum design of composite plates with arbitrary cross sections.

Originality/value

This paper contributes the analytical model for the role of arbitrary cross-sectional boundary conditions and impact of fluid loading on the dispersion analysis of magneto-electro elastic plate. From the graphical patterns of the structure, the effects of stress, strain, magnetic, electric potential and the surrounding fluid on the various considered wave characteristics are more significant and dominant in the cardioid cross sections. Also, the aspect ratio (a/b) and the geometry parameters of elliptic and cardioids cross sections are significant to the industry or other fields that require more flexibility in design of materials with arbitrary cross sections.

Article
Publication date: 24 November 2023

Samrat Hansda, Anirban Chattopadhyay and Swapan K. Pandit

This study comprehensively examines entropy generation and thermosolutal performance of a ternary hybrid nanofluid in a partially active porous cabinet. The purpose of this study…

Abstract

Purpose

This study comprehensively examines entropy generation and thermosolutal performance of a ternary hybrid nanofluid in a partially active porous cabinet. The purpose of this study is to comprehend the intricate phenomena of double diffusion by investigating the dispersion behavior of Al2O3, CuO, and Ag nanoparticles in water.

Design/methodology/approach

The cabinet design consists of two horizontal walls and two curved walls with the lower border divided into a heated and concentrated region of length b and the remaining sections are adiabatic. The vertical borders are cold and low concentration, while the upper border is adiabatic. Two cavity configurations such as convex and concave are considered. A uniform porous medium is taken within the ternary hybrid nanofluid. This has been characterized by the Brinkman-extended Darcy model. Thermosolutal phenomena are governed by the Navier-Stokes equations and are solved by adopting a higher-order compact scheme.

Findings

The present study focuses on exploring the influence of several well-defined parameters, including Rayleigh number, Darcy number, Lewis number, Buoyancy ratio number, nanoparticle volume concentration and heater size. The results indicate that the ternary hybrid nanofluid outperforms both the mono and hybrid nanofluids in all considered aspects.

Originality/value

This study brings forth a significant contribution by uncovering novel flow features that have previously remained unexplored. By addressing a well-defined problem, the work provides valuable insights into the enhancement of thermal transport, with direct implications for diverse engineering devices such as solar collectors, heat exchangers and microelectronics.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 34 no. 2
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 12 March 2024

Atifa Kanwal, Ambreen A. Khan, Sadiq M. Sait and R. Ellahi

The particle distribution in a fluid is mostly not homogeneous. The inhomogeneous dispersion of solid particles affects the velocity profile as well as the heat transfer of fluid…

Abstract

Purpose

The particle distribution in a fluid is mostly not homogeneous. The inhomogeneous dispersion of solid particles affects the velocity profile as well as the heat transfer of fluid. This study aims to highlight the effects of varying density of particles in a fluid. The fluid flows through a wavy curved passage under an applied magnetic field. Heat transfer is discussed with variable thermal conductivity.

Design/methodology/approach

The mathematical model of the problem consists of coupled differential equations, simplified using stream functions. The results of the time flow rate for fluid and solid granules have been derived numerically.

Findings

The fluid and dust particle velocity profiles are being presented graphically to analyze the effects of density of solid particles, magnetohydrodynamics, curvature and slip parameters. Heat transfer analysis is also performed for magnetic parameter, density of dust particles, variable thermal conductivity, slip parameter and curvature. As the number of particles in the fluid increases, heat conduction becomes slow through the fluid. Increase in temperature distribution is noticed as variable thermal conductivity parameter grows. The discussion of variable thermal conductivity is of great concern as many biological treatments and optimization of thermal energy storage system’s performance require precise measurement of a heat transfer fluid’s thermal conductivity.

Originality/value

This study of heat transfer with inhomogeneous distribution of the particles in a fluid has not yet been reported.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 34 no. 4
Type: Research Article
ISSN: 0961-5539

Keywords

1 – 10 of 15