Search results

1 – 10 of 32
Article
Publication date: 15 June 2021

Deniz Zargari Afshar and Payam Alemi

At first, the organic/inorganic and hybrid PV materials by their electrical model are described. Then the proposed converter topology, circuit analysis and various operating modes

Abstract

Purpose

At first, the organic/inorganic and hybrid PV materials by their electrical model are described. Then the proposed converter topology, circuit analysis and various operating modes of converter according to on/off timing of switches are investigated. The current and voltage in the converter components are illustrated and the voltage gain and switching stress of proposed converter are presented. Finally, to show the effectiveness of the proposed converter, the power loss analysis is provided and the simulation is done in PSIM software. In the last section, the advantages of the proposed topology of higher efficiency by lower number of components in compare with other conventional topologies are presented.

Design/methodology/approach

In this paper, an improved topology of DC-DC converter based on VL technique is proposed for Perovskite Solar cells (PeSCs). The PeSCs attracted a lot of interest due to their potential in combining the advantages of both organic and inorganic components. The proposed converter by using fewer components and higher output voltage generation in compare with conventional ones could be a good candidate for PeSCs due to lower efficiency of this cells. The performance of converter is expressed in continuous conduction mode (CCM) and discontinuous conduction mode (DCM), and the boundary conditions for the proposed converter is presented.

Findings

By using VL technique, this converter is used to boost the lower output voltage levels of PeSCs for grid connection. The PV cell output voltage is increased from 24.5 V to 106 V by proposed converter topology. The step-by-step voltage increasing by charging and discharging of inductor and capacitor is used for boosting the input voltage. By comparing other converters, there is no design complexity in the proposed converter structure, and the power loss is much reduced which increases the converter efficiency. On the other hand, due to using lower number of elements of energy storage elements such as inductors and capacitors, the converter cost is also diminished. Therefore, the design topology simplicity which result simple control algorithm and lower number of components which diminish the system cost by appropriate voltage boosting capability are the main advantages of this proposed topology for new PeSCs which don’t have enough efficiency in compare with old Si PV cells.

Originality/value

In this paper, by using the lower number of components a new structure of DC-DC converter based on the VL technique is proposed. The advantages of this converter such as the simplicity, easier control and high voltage gain by lower power loss, could make this converter a good candidate for new PeSCs where the system whole efficiency will be a critical point to have the unique properties of this new materials in lower loss.

Details

Circuit World, vol. 48 no. 2
Type: Research Article
ISSN: 0305-6120

Keywords

Article
Publication date: 3 December 2018

Mohsen Karimi, Mohammad Pichan, Adib Abrishamifar and Mehdi Fazeli

This paper aims to propose a novel integrated control method (ICM) for high-power-density non-inverting interleaved buck-boost DC-DC converter. To achieve high power conversion by…

Abstract

Purpose

This paper aims to propose a novel integrated control method (ICM) for high-power-density non-inverting interleaved buck-boost DC-DC converter. To achieve high power conversion by conventional single phase DC-DC converter, inductor value must be increased. This converter is not suitable for industrial and high-power applications as large inductor value will increase the inductor current ripple. Thus, two-phase non-inverting interleaved buck-boost DC-DC converter is proposed.

Design/methodology/approach

The proposed ICM approach is based on the theory of integrated dynamic modeling of continuous conduction mode (CCM), discontinuous conduction mode and synchronizing parallel operation mode. In addition, it involves the output voltage controller with inner current loop (inductor current controller) to make a fair balancing between two stages. To ensure fast transient performance, proposed digital ICM is implemented based on a TMS320F28335 digital signal microprocessor.

Findings

The results verify the effectiveness of the proposed ICM algorithm to achieve high voltage regulating (under 0.01 per cent), very low inductor current ripple (for boost is 1.96 per cent, for buck is 1.1) and fair input current balance between two stages (unbalancing current less than 0.5A).

Originality/value

The proposed new ICM design procedure is developed satisfactorily to ensure fast transient response even under high load variation and the solving R right-half-plane HP zeros of the CCM. In addition, the proposed method can equally divide the input current of stages and stable different parallel operation modes with large input voltage variations.

Article
Publication date: 3 April 2019

Tapas Kumar Mohapatra, Asim Kumar Dey, Krushna Keshab Mohapatra and Binod Sahu

A two switches non-isolated DC-DC novel buck-boost converter for charging the battery of electric vehicle is projected in this paper. The performance of the converter is compared…

Abstract

Purpose

A two switches non-isolated DC-DC novel buck-boost converter for charging the battery of electric vehicle is projected in this paper. The performance of the converter is compared with conventional buck-boost and transformer-less P/O buck-boost converter by Shan and Faqiang. The detail operation and performance analysis of the proposed converter is described both in continuous conduction mode and discontinuous conduction mode. A state space model and simulation model is designed in MATLAB. The PID controller parameters are tuned using Single-objective Salp swarm optimization algorithm using MATLAB. The controller is implemented using DSP board. The hardware and simulation results are projected in the paper to validate the effectiveness of the proposed buck-boost converter. A comparison analysis is projected among conventional converter and Shan & Faqiang converter.

Design/methodology/approach

The converter state space model is designed and simulation model is also developed in MATALAB. The controller is implemented using DSP board. The parameters are obtained using optimization technique using SSA algorithm. The hardware design is also implemented, and the result is compared with the Shan and Faqiang converter. The efficiency of the converter is also tested.

Findings

The converter is providing a higher efficiency. The inductor current is also positive in both buck and boost mode. The robustness of the controller is better for a wide range of variation of input voltage because the output voltage remains almost constant. Therefore, this is very suitable for battery charging and PV module application.

Practical implications

For battery charging from PV module where voltage fluctuation is frequent.

Social implications

The authors can use household applications to charge the battery using PV module.

Originality/value

The converter design concept is new. Optimization is used to find the parameters of the controllers and is implemented in hardware design. The parameters obtained provide robustness in the converter performance.

Details

World Journal of Engineering, vol. 16 no. 1
Type: Research Article
ISSN: 1708-5284

Keywords

Article
Publication date: 25 July 2019

Ruchi Rashmi and Shweta Jagtap

Traditionally, industrial power supplies have been exclusively controlled through analog control to sustain high reliability with low cost. However, with the perpetual decrement…

Abstract

Purpose

Traditionally, industrial power supplies have been exclusively controlled through analog control to sustain high reliability with low cost. However, with the perpetual decrement in cost of digital controllers, the feasibility of a digitally controlled switch mode power supply has elevated significantly. This paper aims to outline the challenges related to the design of digital proportional-integral (PI) controlled synchronous rectifier (SR) buck converter by comparing controller performance in continuous and discrete time. The trapezoidal approximation-based digital PI control is designed for low voltage and high-frequency SR buck converter operating under continuous conduction mode.

Design/methodology/approach

The analog and digital controller are designed using a SISO tool of MATLAB. Here, zero-order hold transform is used to convert the transfer function from continuous to discrete time. Frequency and time domain analysis of continuous plant, discrete plant and close loop system is performed. The designed digital PI control is simulated in MATLAB Simulink. The simulated results is also verified on hardware designed around digital signal processing control.

Findings

The continuous and discrete control loops are validated with multiple tests in the time and frequency domain. The detailed steady state theoretical analysis and performance of the SR buck converter is presented and verified by simulation. It is found that the delay in digital control loop results in a low phase margin. This phase margin decreases with higher bandwidth. The hardware experiments with the digital control loop are carried out on a 10 W prototype. The chosen parameters for the SR buck converter are found to be optimum for steady and transient state response.

Originality/value

This paper compares the digital and analog control approach of compensator design. It focuses on the implications created at the time of transforming the control design from continuous to discrete time. Further, it also focuses on the selection of parameters such as phase margin, bandwidth and low pass filter.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering , vol. 38 no. 6
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 9 November 2012

Indrek Roasto and Dmitri Vinnikov

This paper is devoted to the quasi‐Z‐source (qZS) converter family. Recently, the qZS‐converters have attracted high attention because of their specific properties of voltage…

Abstract

Purpose

This paper is devoted to the quasi‐Z‐source (qZS) converter family. Recently, the qZS‐converters have attracted high attention because of their specific properties of voltage boost and buck functions with a single switching stage. As main representatives of the qZS‐converter family, this paper aims to discuss the traditional quasi‐Z‐source inverter as well as two novel extended boost quasi‐Z‐source inverters.

Design/methodology/approach

Steady state analysis of the investigated topologies operating in the continuous conduction mode is presented. Input voltage boost properties of converters are compared for an ideal case. Mathematical models of converters considering losses in components are derived. Practical boost properties of converters are compared to idealized ones and the impact of losses on the voltage boost properties of each topology is justified. Finally, the impact of losses in the components on the boost conversion efficiency is analyzed.

Findings

To demonstrate the impact of component losses on the overall efficiency of the qZS‐converter, a number of experiments were performed. The impact of inductor winding resistance was compared with the forward voltage drop of qZS‐network diodes. It was found that the forward voltage drop of diodes has the highest effect on the efficiency. If the diodes are replaced with high‐power Schottky rectifiers with a low forward voltage drop (UD=0.6 V), the effective efficiency rise by at least 5 percent could be expected for all three qZS‐converter topologies. For the same operating parameters and component values, the traditional qZS‐converter had the highest efficiency of the qZS‐converter family. The boost converter was compared with the traditional qZS converter in terms of efficiency. It was found that the boost converter has an efficiency 2 percent higher in the boost operation mode and approximately the same efficiency in the non‐boost operation.

Practical implications

The paper provides a good theoretical background for further practical studies. qZS‐converters have voltage boost and buck functions with a single switching stage, which could be especially advantageous in renewable energy applications.

Originality/value

The paper presents a detailed study of the qZS‐converter family. Mathematical models of converters considering losses in components are derived. It is the first time the boost converter is compared with the qZS converter.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering, vol. 31 no. 6
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 12 March 2019

Durga Devi R. and Nageswari S.

The purpose of this paper is to propose a mathematical model for voltage super-lift dc-dc power converter in continuous conduction mode (CCM). Using the presented mathematical…

Abstract

Purpose

The purpose of this paper is to propose a mathematical model for voltage super-lift dc-dc power converter in continuous conduction mode (CCM). Using the presented mathematical model, the analysis of dynamics of power stage for voltage super-lift dc-dc power converter can be performed.

Design/methodology/approach

The proposed method is based on the average state space model using the state equations of the dc-dc power converter. In the proposed method, the converter is represented as a set of differential equations derived for each switching state of the power switch in terms of inductor current and capacitor voltage. The proposed method describes the dynamic behaviour of the system. The controller is designed to meet performance requirement of the system such as to maintain the dynamics such as stability, steady-state accuracy and the speed of response of the system. Using the obtained model, the analysis of dynamic response of the voltage super-lift dc-dc power converter can be performed.

Findings

The converter is modelled and verified using conventional circuit analysis method employing state-space averaging technique, and their corresponding transfer function is also derived. The dynamics of the converter is investigated using frequency response characteristics obtained using MATLAB programming environment. In addition, to improve the stability of the converter, proportional-integral controller is designed using Ziegler–Nichols tuning rules, and the effect of the compensator in the plant is also investigated.

Originality/value

The proposed method can be used for analysing the dynamics of power stage for voltage super-lift DC-DC power converter.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering, vol. 38 no. 2
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 12 April 2022

Phanindra Thota, Amarendra Reddy Bhimavarapu and V.V.S. Bhaskara Reddy Chintapalli

This study aims to propose a new non-isolated Multi-Input Zeta-SEPIC (MIZS) dc–dc converter for renewable energy sources integration with different voltage levels (low-voltage…

67

Abstract

Purpose

This study aims to propose a new non-isolated Multi-Input Zeta-SEPIC (MIZS) dc–dc converter for renewable energy sources integration with different voltage levels (low-voltage source, high-voltage source). The chosen configuration of the converter is capable of performing bucking as well as boosting operations in various modes of operation.

Design/methodology/approach

Parameters of the selected MIZS converter are designed using the time-domain analysis. The selected converter belongs to the sixth-order family with two switches and six energy storage elements. State-space model of the converter is developed for each mode of operation, and using these individual state-space models, an average state-space model of the converter useful to carry out detailed analysis for different operating conditions is developed. Analysis related to operational stability of the converter is also carried out using Participation Factor (PaF)-based Eigen value analysis.

Findings

Using the PaF-based Eigen analysis, participation of the various state variables in different Eigen modes and vice versa is carried out. Performance of the converter for different parameter variations in the allowable range is determined and the same has been used to find the operational stability of the converter under different modes of operation. The selected converter has low inductor ripple currents and output voltage ripples when delivering the power to load.

Originality/value

Because operational stability of the converter under various operating conditions is one of the key performance indicators for selecting a particular type of converter, PaF-based Eigen value analysis has been carried out using the average state-space model developed for the selected MIZS converter. Operational stability analysis of the converter is carried out for parameter variations also. In addition, participation of the various states in each Eigen mode and vice versa have been analyzed for designed parameter values and also variation within the specified range of variations.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering , vol. 41 no. 5
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 10 November 2021

Alireza Goudarzian

Control-signal-to-output-voltage transfer function of the conventional boost converter has at least one right-half plane zero (RHPZ) in the continuous conduction mode which can…

Abstract

Purpose

Control-signal-to-output-voltage transfer function of the conventional boost converter has at least one right-half plane zero (RHPZ) in the continuous conduction mode which can restrict the open-loop bandwidth of the converter. This problem can complicate the control design for the load voltage regulation and conversely, impact on the stability of the closed-loop system. To remove this positive zero and improve the dynamic performance, this paper aims to suggest a novel boost topology with a step-up voltage gain by developing the circuit diagram of a conventional boost converter.

Design/methodology/approach

Using a transformer, two different pathways are provided for a classical boost circuit. Hence, the effect of the RHPZ can be easily canceled and the voltage gain can be enhanced which provides conditions for achieving a smaller working duty cycle and reducing the voltage stress of the power switch. Using this technique makes it possible to achieve a good dynamic response compared to the classical boost converter.

Findings

The observations show that the phase margin of the proposed boost converter can be adequately improved, its bandwidth is largely increased, due to its minimum-phase structure through RHPZ cancellation. It is suitable for fast dynamic response applications such as micro-inverters and fuel cells.

Originality/value

The introduced method is analytically studied via determining the state-space model and necessary criteria are obtained to achieve a minimum-phase structure. Practical observations of a constructed prototype for the voltage conversion from 24 V to 100 V and various load conditions are shown.

Article
Publication date: 30 June 2020

Ruchi Rashmi and Shweta Jagtap

With the advancement of technology, size, cost, and losses of the switched mode power supply (SMPS) have been decreasing. However, due to the high frequency switching, design of…

Abstract

Purpose

With the advancement of technology, size, cost, and losses of the switched mode power supply (SMPS) have been decreasing. However, due to the high frequency switching, design of magnetic drives and isolation circuits are becoming a crucial factor in SMPS. This paper presents design criteria, procedure and implementation of AC-DC half bridge (HB) converter with lower cost, smaller size and lower voltage stress on the power switch.

Design/Methodology/approach

The HB converter is designed in a symmetrical mode with a series coupling capacitor. Isolated power supplies are used for the converter and control circuit. Further, a transformer based isolated gate driver is used to drive both MOSFETs. The control IC works in voltage control mode to regulate voltage by controlling the duty cycle of the MOSFETs.

Findings

Control characteristics and performance of the HB converter is simulated using the MATLAB software and prototype of 170 W HB converter is built to validate the analytical results under variable load current and source voltage. The power quality and variation of load voltage at 2 A, 5 A, 7 A are reported.

Originality/value

This paper presents the design of a low-cost HB converter in a symmetrical mode which saves the additional cost of symmetric correction circuit normally required in asymmetrical mode design. This paper also focuses on the selection of primary and secondary side switch, series coupling capacitor, commuting diode, isolated drive and charge equalizer resistor.

Details

World Journal of Engineering, vol. 17 no. 5
Type: Research Article
ISSN: 1708-5284

Keywords

Article
Publication date: 1 January 2013

Ebrahim Babaei and Hamed Mashinchi Mahery

The purpose of this paper is to propose a new method for mathematical modeling of the buck dc‐dc converter in discontinuous conduction mode (DCM). By using the presented modeling…

Abstract

Purpose

The purpose of this paper is to propose a new method for mathematical modeling of the buck dc‐dc converter in discontinuous conduction mode (DCM). By using the presented modeling method, the analysis of the transient and the steady states of the buck dc‐dc converter can be performed.

Design/methodology/approach

The proposed method is based on the two Laplace and Z transforms. In the proposed method, at first, the equations of the inductor current and the capacitor voltage are obtained as the power switch is on and off. Then by using the Laplace and Z transforms, the obtained equations are solved and the relations of the inductor current and the output voltage are obtained. In the proposed method, the Laplace transform is used for determining of the general relations of the inductor current and the output voltage. Also the Z‐transform is used as a tool for determining the initial values of the inductor current and the output voltage.

Findings

The transient and the steady state response of the dc‐dc converter is analyzed by the proposed method. By using the Z‐transform, the transient response of the converter and the effect of the elements of the converter on the time constant of the transient response are investigated. In addition, the effect of the elements of the converter and the load resistance on the electrical parameters of the converter such as the output voltage ripple and the inductor current ripple are investigated.

Originality/value

The proposed method in this paper is a suitable method for mathematical modeling of dc‐dc converters. The acernote of this method is that it can be used in both transient and steady state response, analysis of the dc‐dc converters. By using the final value theorem of the Z‐transform, the steady state response of the converter is investigated. Also by using this transform, the time constants of the transient response of the converter are determined. Finally, the results of the theoretical analysis are compared with the results of simulation in PSCAD/EMTDC and also the experimental results to prove the validity of the presented subjects.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering, vol. 32 no. 1
Type: Research Article
ISSN: 0332-1649

Keywords

1 – 10 of 32