Search results

1 – 10 of 614
Article
Publication date: 27 June 2008

Mohammad Ghassem Mahjani, Mohammad Sabzali, Majid Jafarian and Jaber Neshati

The purpose of this paper is to investigate the effects of inorganic inhibitors on the corrosion rate of aluminum alloy using the electrochemical noise (EN) analysis and…

1068

Abstract

Purpose

The purpose of this paper is to investigate the effects of inorganic inhibitors on the corrosion rate of aluminum alloy using the electrochemical noise (EN) analysis and electrochemical impedance spectroscopy (EIS) techniques.

Design/methodology/approach

EN and EIS measurements were employed to study the corrosion behavior of aluminum alloy in Na2SO4(0.50 M)/NaCl(0.20 M) solution in presence of inorganic inhibitors. The time‐series noise patterns were transformed into the frequency domain using fast Fourier transformation, and then their power spectrum densities (PSDs) at specified frequencies were determined and compared with the EIS and polarization results.

Findings

The EN, EIS and polarization results were in agreement. The inhibitive effect of the anions decreased in the order: CrO42−>Cr2O72−>NO3>WO42−>MoO42−>NO2. The results showed that the slope of PSD of the current (i.e. the “roll off”) was less where inhibition efficiency was greater. The spectral noise impedance and the modulus of the impedance recorded using impedance spectroscopy showed good agreement.

Originality/value

This paper provides useful information relative to corrosion inhibition efficiency of the sodium and potassium salts using EN analysis technique.

Details

Anti-Corrosion Methods and Materials, vol. 55 no. 4
Type: Research Article
ISSN: 0003-5599

Keywords

Article
Publication date: 5 July 2024

Majid Monajjemi and Fatemeh Mollaamin

Early prediction of any type of cancer is important for the treatment of this type of disease, therefore, our target to evaluate whether monitoring early changes in plasma human…

Abstract

Purpose

Early prediction of any type of cancer is important for the treatment of this type of disease, therefore, our target to evaluate whether monitoring early changes in plasma human epidermal growth factor receptor 2 (HER2) levels (using EIS), could help in the treatment of breast cancer or not? Human epidermal growth factor receptor 2 (HER2) overexpression is an important biomarker for treatment selection in earlier stages of cancers. The combined detection of the HER2 gene in plasma for blood cancer provides an important reference index for the prognosis of metastasis to other tissues. For this purpose, the authors fabricated and characterized a model wireless biosensor-based electrochemical impedance spectroscopy (EIS) for detecting HER2 plasma as therapeutics.

Design/methodology/approach

Most sensors generally are fabricated based on a connection between component of the sensors and the external circuits through wires. Although these types of sensors provide suitable sensitivities and also quick responses, the connection wires can be limited to the sensing ability in various devices approximately. Therefore, the authors designed a wireless sensor, which can provide the advantages of in vivo sensing and also long-distance sensing, quickly.

Findings

The biosensor structure was designed for detection of HER2, HER3 and HER-4 from lab-on-chip approach with six units of screen-printed electrode (SPE), which is built of an electrochemical device of gold/silver, silver/silver or carbon electrodes. The results exhibited that the biosensor is completely selective at low concentrations of the plasma and HER2 detection via the standard addition approach has a linearity plot, therefore, by using this type of biosensors HER2 in plasma can be detected.

Originality/value

This is then followed by detecting HER2 in real plasma using standard way which proved to have great linearity (R2 = 0.991) proving that this technique can be used to detect HER2 solution in real patients.

Article
Publication date: 11 December 2019

Zhangyu Wu, Hongfa Yu, Haiyan Ma, Bo Da and Yongshan Tan

Coral aggregate seawater concrete (CASC) is a new type of lightweight aggregate concrete that is becoming widely used in reef engineering. To investigate the corrosion behavior of…

Abstract

Purpose

Coral aggregate seawater concrete (CASC) is a new type of lightweight aggregate concrete that is becoming widely used in reef engineering. To investigate the corrosion behavior of different kinds of rebar in CASC exposed to simulated seawater for 0-270 d, the electrochemical techniques, including linear polarization resistance (LPR) technique and the electrochemical impedance spectroscopy (EIS), were used in the present work.

Design/methodology/approach

The electrochemical techniques, including LPR technique and the EIS, were used in the present work.

Findings

Based on the time-varying law of linear polarization curves, self-corrosion potential (Ecorr), polarization resistance (Rp), corrosion current density (Icorr), corrosion rate (i), and the characteristics of EIS diagrams for different types of rebar in CASC, it can be found that the anti-corrosion property of them can be ranked as epoxy resin coated steel > 2205 duplex stainless steel (2205S) > 316 L stainless steel (316 L) > organic coated steel > ordinary steel. Additionally, the linear regression equation between Rp and charge transfer resistance (Rct) was established. Finally, the EIS corrosion standard of rebar was established from the LPR corrosion standard, which provides a direct standard for the EIS technique to determine the condition of rebar in CASC.

Originality/value

The linear regression equation between polarization resistance and charge transfer resistance was established. And the EIS corrosion standard of rebar was established from the LPR corrosion standard, which provides a direct standard for the EIS technique to determine the condition of rebar in CASC.

Details

Anti-Corrosion Methods and Materials, vol. 67 no. 1
Type: Research Article
ISSN: 0003-5599

Keywords

Article
Publication date: 3 November 2014

N.A. Mat Nor, L. Ismail, S.K.M. Jamari, K. Ramesh, B. Vengadaesvaran and A.K. Arof

This paper aims to analyse the coating behaviour in corrosion environment as well as to evaluate the best percentage amount of copper oxide and copper needed for organic coating…

Abstract

Purpose

This paper aims to analyse the coating behaviour in corrosion environment as well as to evaluate the best percentage amount of copper oxide and copper needed for organic coating in order to prevent the corrosion degradation. Electrochemical impedance spectroscopy (EIS) studies have been conducted in order to evaluate the corrosion performance of polyester-epoxy-copper oxide and polyester-epoxy-copper coating systems.

Design/methodology/approach

The availability of this modem instruments is used to obtain impedance data as well as computer programs to interpret the results that made the technique popular. In addition, EIS is well suited to the study of polymer-coated metals.

Findings

The results showed that samples containing 25 weight per cent of copper oxide and copper (90P25CuO and 90P25Cu) obtained the excellent corrosion properties from the first day up to 30 days of NaCl immersion. The highest corrosion resistance values obtained by 90P25CuO and 90P25Cu on the 30th day were 7.107 × 108 O and 5.701 × 108 O, respectively, with lower double layer capacitance of 1.407 × 10−9 Farad and 3.935 × 10−9 Farad, respectively. Moreover, the water uptake gained by these two coating samples was the lowest at the end of immersion, which was 0.0084 for 90P25CuO and 0.1592 for 90P25Cu, showing that the sample has good corrosion performance.

Originality/value

This paper discussed on the highest corrosion resistance, double layer capacitance and the water uptake of the copper (Cu) and copper oxide (CuO) coating system obtained from the EIS measurements.

Details

Pigment & Resin Technology, vol. 43 no. 6
Type: Research Article
ISSN: 0369-9420

Keywords

Article
Publication date: 8 January 2020

Zhiping Zhu, Chun Shi, Yu Zhang and Zhifeng Liu

The purpose of this paper is to study the effects of Cl and direct stray current on the soil corrosion of three grounding grid materials.

Abstract

Purpose

The purpose of this paper is to study the effects of Cl and direct stray current on the soil corrosion of three grounding grid materials.

Design/methodology/approach

The electrochemical corrosion properties of three grounding grid materials, which include the Q235 steel, Q235 galvanized flat steel and copper, were measured by means of the weak polarization curve method and electrochemical impedance spectroscopy; the corrosion rate of specimens was calculated using the weight loss method; and the specimen surfaces were characterized using the scanning electron microscopy, energy-dispersive spectroscopy and X-ray diffraction analysis.

Findings

Results showed that both factors, Cl and direct stray current, can accelerate the corrosion rate of grounding grid materials. The magnitude of DC stray current density affected the mass transfer type and response frequency of the anode and cathode reaction of grounding materials, while the Cl contents of the soil only affect the mass transfer rate of the electrode material from the electrochemical impedance spectroscopy diagrams. The electric field generated by the DC stray current caused Cl directed migration. The larger the DC stray current density, the greater the diffusion process and the greater the weight loss rate of the grounding grid materials that would have a logarithmic relationship with the Cl content at the same DC stray current density. The corrosion resistance of the three materials is copper > Q235 galvanized flat steel > Q235 flat steel.

Originality/value

The paper provides information regarding the relationship among Cl, direct stray current and corrosion of three grounding grid materials by means of electrochemical impedance spectroscopy. Meanwhile the weight loss rate is the logarithmic relationship with the Cl content, which is useful for understanding the corrosion mechanism of Q235 steel, Q235 galvanized flat steel and copper under the condition of Cl and direct stray current in soil.

Details

Anti-Corrosion Methods and Materials, vol. 67 no. 1
Type: Research Article
ISSN: 0003-5599

Keywords

Article
Publication date: 13 September 2011

Reza Moshrefi, Mohammad Ghassem Mahjani, Ali Ehsani and Majid Jafarian

This paper aims to investigate the galvanic corrosion of titanium/L 316 stainless steel, by electrochemical noise (EN), electrochemical impedance spectroscopy (EIS), and…

1062

Abstract

Purpose

This paper aims to investigate the galvanic corrosion of titanium/L 316 stainless steel, by electrochemical noise (EN), electrochemical impedance spectroscopy (EIS), and anode/cathode area ratio effect on the galvanic behavior of the couple.

Design/methodology/approach

The EN measurement was employed to examine effects of anode to cathode area ratio on the galvanic corrosion behavior between stainless steel L 316 and titanium in artificial seawater. Current noise and potential noise were monitored simultaneously using a three‐electrode configuration under open‐circuit condition. The noise resistance was evaluated as the ratio of the standard deviation of the potential to that of the current noise after removing the DC component. The time‐series noise patterns were transformed into frequency domain by fast Fourier transformation and then their power spectrum densities (PSDs) at specified frequency were determined and compared with the EIS and polarization results.

Findings

The EN, EIS and polarization results were in agreement. Galvanic corrosion density increase and galvanic potential moved slowly to negative direction with decrease in anode/cathode area ratio. The results showed that the slope of PSD of the current (i.e the “roll off”) was rising slowly where the anode/cathode area ratio was declined. The relationship between polarization resistance (Rp) and noise resistance (Rn) was investigated. Rt was determined by EIS for samples, and its value compared with Rp and Rn. The result indicates that galvanic corrosion has an inversely relation with anode/cathode area ratio that exposed to aggressive environment.

Originality/value

This paper presents the application of noise analysis to demonstrate galvanic corrosion and the effect of area ratio anode/cathode on current density and galvanic potential.

Details

Anti-Corrosion Methods and Materials, vol. 58 no. 5
Type: Research Article
ISSN: 0003-5599

Keywords

Article
Publication date: 14 September 2010

Zhang Junxi, Lu Jinliang, Yan Licheng, Feng Yu, Zhang Lingsong and Zhang Yu

The purpose of this paper is to investigate the application of electrochemical impedance spectroscopy (EIS) as a tool for determining the optimum protection potential (OPP) of…

379

Abstract

Purpose

The purpose of this paper is to investigate the application of electrochemical impedance spectroscopy (EIS) as a tool for determining the optimum protection potential (OPP) of brass in impressed current cathodic protection (ICCP) for a given environment.

Design/methodology/approach

The electrochemical measurements (EIS, polarization curves) were applied to study the electrode processes of brass in fresh water at different pH values.

Findings

The paper finds that the depolarizer in the electrode process of brass corrosion is different in solutions with different pH values, and has different key steps in the electrode processes. Hence, EIS is a better tool for the determination of the optimum polarization potential for brass in fresh water when the depolarizer of the cathodic half‐cell reaction in corrosion reaction is the dissolved oxygen. However, when the depolarizer in solution is changed, and especially if the reduction reaction of depolarization is not controlled by the mass transport, the EIS method may be not suitable to determine the OPP.

Originality/value

There have been few reports on the effect of pH on the applicability of EIS as a tool for determining the OPP. In this paper, it is clearly shown that the EIS method be suitable only to determine the OPP when the critical step in the electrochemical process is diffusion of the depolarizer. This research can offer theoretical guidelines for the application of EIS to determine the OPP in ICCP.

Details

Anti-Corrosion Methods and Materials, vol. 57 no. 5
Type: Research Article
ISSN: 0003-5599

Keywords

Article
Publication date: 17 May 2013

Xin Zheng, Dahai Xia, Huihui Wang and Congwei Fu

The purpose of this paper is to report a novel electrochemical sensor designed to detect the corrosion of metal cans used for beverage packaging.

Abstract

Purpose

The purpose of this paper is to report a novel electrochemical sensor designed to detect the corrosion of metal cans used for beverage packaging.

Design/methodology/approach

Electrochemical impedance spectroscopy (EIS) and electrochemical noise (EN) were performed to detect the corrosion degree of beverage cans that had been stored for 1 month (named s1), 3 months (named s2), 27 months (named s3) and 43 months (named s4).

Findings

The EIS results showed that the EIS plot of s1 samples had not developed to a characteristic of two time‐constants, indicating that the coating showed good protective performance. The EIS plots of s2, s3 and s4 showed characteristics of two time‐constants, indicating that the organic coatings of s2, s3, and s4 had lost their protective performance. EN results showed that quantities and amplitudes of transient peaks increased with the increasing storage time, indicating that an increasing degree of local corrosion occurred within the cans. A corrosion process for beverage cans is discussed and can be considered in three stages.

Originality/value

The designed electrochemical sensor was successfully applied to detect the performance of beverage cans and, further, provided scientific proof to evaluate the shelf life of metal cans for packaging.

Details

Anti-Corrosion Methods and Materials, vol. 60 no. 3
Type: Research Article
ISSN: 0003-5599

Keywords

Article
Publication date: 25 May 2010

C.R. Magaña‐Zavala, M.E. Angeles‐San Martín, F.J. Rodríguez‐Gómez, D.R. Acosta, R. Ávila‐Godoy and B. Hidalgo‐Prada

The purpose of this paper is a theoretical modeling use of electrochemical impedance spectroscopy (EIS) technique for different cases that could describe the possible…

Abstract

Purpose

The purpose of this paper is a theoretical modeling use of electrochemical impedance spectroscopy (EIS) technique for different cases that could describe the possible electrochemical behaviour on steel coated with metallic and oxide thin films (of nickel) deposited by magnetron sputtering, and compare them to know if the theoretical analysis resembles the real case. It is extremely important to clarify that such simulations do not consider the use of the constant phase element (CPE) for the analysis. Therefore, the goal for the theoretical models should be to gain acceptance in electrochemical research.

Design/methodology/approach

In order to obtain the equivalent circuits to explain the different possible behaviours of the films and their protective properties in sour media, EIS experimental data were correlated with data from the simulation software. The different nickel and nickel oxide thin films were tested after their deposition by magnetron sputtering on low‐carbon steel and after they had then been exposed to the sour media electrolyte of NaCl 3 wt% + H2S (saturated).

Findings

The EIS simulation starts from the laboratory evaluation of nickel and nickel oxide thin films as anticorrosive protection for low‐carbon steel exposed to sour media. From these results, it is found that the nickel and nickel oxide films could adopt seven different behaviours, and all are possible to occur.

Practical implications

The equivalent circuits proposed will give an insight into the corrosion phenomena for different metals coated with thin films and exposed to sour media, because all of the simulations are made on the basis of real EIS results.

Originality/value

The electrical analysis in the simulation diagram did not consider the use of the CPE to adjust the plots. In consequence, the values of all parameters for the seven different adjustments obtained through the simulations establish a reference for the explanation of the corrosion phenomena. They are also a tool with which to predict the possible behaviour of a thin film deposited on metal and exposed to electrolytes that are as aggressive as sour media.

Details

Anti-Corrosion Methods and Materials, vol. 57 no. 3
Type: Research Article
ISSN: 0003-5599

Keywords

Article
Publication date: 16 March 2022

Iling Aema Wonnie Ma, Sachin Sharma Ashok Kumar, Ramesh Kasi, Ammar Shafaamri and Ramesh Subramaniam

This study aims to propose that the corrosion resistance of the neat epoxy coating can be further enhanced by incorporating reinforcing agents.

Abstract

Purpose

This study aims to propose that the corrosion resistance of the neat epoxy coating can be further enhanced by incorporating reinforcing agents.

Design/methodology/approach

Chitosan, silica and their hybrid compound were used to study the subject of corrosion resistance of epoxy coating systems. This work used 3.5 Wt.% NaCl solution as the electrolyte, and electrochemical impedance spectroscopy (EIS) was used to investigate the electrochemical behaviour of the studied coating systems. Standard and accelerated states were used without and with scratch on the coating layer.

Findings

It was found that the impedance value of composite coating incorporated with the hybrid compound was significantly higher at 1010 Ω after 14 days of exposure in both testing states. The breakpoint frequency (fb) determination also proves with large capacitive region at low-to-high frequency of impedance plots corresponding to the high corrosion resistance.

Originality/value

The hybrid compound consisting of chitosan as organic biopolymer and silica as inorganic material, respectively, served as a promising reinforcing agent for composite coating as a promising corrosion inhibitor. Different states of EIS measurement were used which are standard (without scratch) and accelerated (with scratch) states associated with the fb values.

Details

Pigment & Resin Technology, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0369-9420

Keywords

1 – 10 of 614