Search results

1 – 10 of 53
Article
Publication date: 17 February 2022

Manish Kumar Ghodki

Electric motor heating during biomass recovery and its handling on conveyor is a serious concern for the motor performance. Thus, the purpose of this paper is to design and…

Abstract

Purpose

Electric motor heating during biomass recovery and its handling on conveyor is a serious concern for the motor performance. Thus, the purpose of this paper is to design and develop a hardware prototype of master–slave electric motors based biomass conveyor system to use the motors under normal operating conditions without overheating.

Design/methodology/approach

The hardware prototype of the system used master–slave electric motors for embedded controller operated robotic arm to automatically replace conveyor motors by one another. A mixed signal based embedded controller (C8051F226DK), fully compliant with IEEE 1149.1 specifications, was used to operate the entire system. A precise temperature measurement of motor with the help of negative temperature coefficient sensor was possible due to the utilization of industry standard temperature controller (N76E003AT20). Also, a pulse width modulation based speed control was achieved for master–slave motors of biomass conveyor.

Findings

As compared to conventional energy based mains supply, the system is self-sufficient to extract more energy from solar supply with an energy increase of 11.38%. With respect to conventional energy based \ of 47.31%, solar energy based higher energy saving of 52.69% was reported. Also, the work achieved higher temperature reduction of 34.26% of the motor as compared to previous cooling options.

Originality/value

The proposed technique is free from air, liquid and phase-changing material based cooling materials. As a consequence, the work prevents the wastage of these materials and does not cause the risk of health hazards. Also, the motors are used with their original dimensions without facing any leakage problems.

Details

Journal of Engineering, Design and Technology , vol. 22 no. 3
Type: Research Article
ISSN: 1726-0531

Keywords

Article
Publication date: 30 April 2024

Jungang Wang, Xincheng Bi and Ruina Mo

The electromechanical planetary transmission system has the advantages of high transmission power and fast running speed, which is one of the important development directions in…

Abstract

Purpose

The electromechanical planetary transmission system has the advantages of high transmission power and fast running speed, which is one of the important development directions in the future. However, during the operation of the electromechanical planetary transmission system, friction and other factors will lead to an increase in gear temperature and thermal deformation, which will affect the transmission performance of the system, and it is of great significance to study the influence of the temperature effect on the nonlinear dynamics of the electromechanical planetary system.

Design/methodology/approach

The effects of temperature change, motor speed, time-varying meshing stiffness, meshing damping ratio and error amplitude on the nonlinear dynamic characteristics of electromechanical planetary systems are studied by using bifurcation diagrams, time-domain diagrams, phase diagrams, Poincaré cross-sectional diagrams, spectra, etc.

Findings

The results show that when the temperature rise is less than 70 °C, the system will exhibit chaotic motion. When the motor speed is greater than 900r/min, the system enters a chaotic state. The changes in time-varying meshing stiffness, meshing damping ratio, and error amplitude will also make the system exhibit abundant bifurcation characteristics.

Originality/value

Based on the principle of thermal deformation, taking into account the temperature effect and nonlinear parameters, including time-varying meshing stiffness and tooth side clearance as well as comprehensive errors, a dynamic model of the electromechanical planetary gear system was established.

Details

Engineering Computations, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 10 February 2023

Kanungo Barada Mohanty and Pavankumar Daramukkala

The purpose of this study is to provide the enhancement of power quality of a high power-rated voltage source inverter driven induction motor with a three-phase, three-level…

Abstract

Purpose

The purpose of this study is to provide the enhancement of power quality of a high power-rated voltage source inverter driven induction motor with a three-phase, three-level neutral point clamped converter placed at the front end, while a passive power filter is connected in shunt with it. The improvement in power quality can be achieved by reducing the total harmonic distortion in source current. The controllers were designed for the linearization of the high-power induction motor drive. A control method is presented for the regulation of the common DC-link voltage.

Design/methodology/approach

The induction motor is modeled using its dynamic equations, and a decoupling controller is designed to linearize the nonlinear dynamics of the drive through feedback. The common DC-link voltage of the proposed front-end connected converter is monitored and controlled through a control method which feeds the pulse width modulated inverter that drives the induction motor. A passive power filter is designed to meet the reactive power requirement of the system in addition to improve the power quality.

Findings

Simulations were carried out for the proposed topology of the drive mechanism, and the outcomes were analyzed by a comparative analysis of the drive system both in the presence of the passive filter as well as in the absence of the filter. The total harmonic distortion is found to be reduced enough to meet the standards with the designed filter, and the reactive power is also compensated considerably. The input power factor at the supply side is maintained almost to unity, and the DC-link voltage of the proposed circuit topology is maintained at the desired level. The overall performance of the drive system was found to be useful and economical.

Originality/value

A new topology of a front-end connected three-level neutral point clamped converter to a high power-rated induction motor drive is proposed. The drive is fed by a pulse width modulated inverter with a common DC-link with the front end connected converter. A passive filter is designed with respect to the reactive power requirement of the system and connected in shunt to the converter at the supply side. Control schemes are designed and used for the drive system and also for the regulation of the common DC-link voltage of the proposed front end connected converter.

Details

World Journal of Engineering, vol. 21 no. 3
Type: Research Article
ISSN: 1708-5284

Keywords

Article
Publication date: 31 March 2023

Tapas Kumar Mohapatra and Asim Kumar Dey

This study aims to propose a unique algorithm-based hysteresis current control technique (HCCT) for induction motor using a single-phase voltage source inverter (SPVSI) to…

Abstract

Purpose

This study aims to propose a unique algorithm-based hysteresis current control technique (HCCT) for induction motor using a single-phase voltage source inverter (SPVSI) to eliminate both sub and inter harmonics (SIH) and electromagnetic interference (EMI). The total harmonic distortion (THD) of the load current also reduces in comparison to standard HCCT and modified technique-based existing HCCT.

Design/methodology/approach

Matlab simulation has been carried out to develop an SPVSI model and the unique algorithm-based HCCT. The same platform has also been used to develop a few existing HCCTs such as standard, dual-band and modified. The switching frequency and harmonic analysis of load currents for all the HCCTs have been compared in the paper. The hardware implementation of the proposed algorithm-based HCCT was also verified and compared with the simulation results.

Findings

The proposed unique algorithm-based HCCT provides the benefits of both unipolar and bipolar switching techniques. It reduces the switching frequency as unipolar switching scheme and eliminates the EMI. It also reduces THD and nullifies SIH of the load current. This enables an improvement in the overall performance and efficiency of the motor.

Practical implications

This proposed HCCT eliminates the SIH and improves the overall efficiency of the motor, hence can prevent overheating, vibration, acoustic noise, pulsating torque and braking of the rotor shaft of the motor and increasing the reliability of the system.

Social implications

It can be implemented for the motors that are used in household applications and electric vehicles through one-phase inverter.

Originality/value

This proposed HCCT has detected the zero crossing point of reference current, allowed samples and shifted the necessary amount of hysteresis band at zero crossing region to eliminate SIH and THD.

Details

World Journal of Engineering, vol. 21 no. 3
Type: Research Article
ISSN: 1708-5284

Keywords

Open Access
Article
Publication date: 17 February 2023

Luca Pugi, Giulio Rosano, Riccardo Viviani, Leonardo Cabrucci and Luca Bocciolini

The purpose of this work is to optimize the monitoring of vibrations on dynamometric test rigs for railway brakes. This is a quite demanding application considering the continuous…

Abstract

Purpose

The purpose of this work is to optimize the monitoring of vibrations on dynamometric test rigs for railway brakes. This is a quite demanding application considering the continuous increase of performances of high-speed trains that involve higher testing specifications for brake pads and disks.

Design/methodology/approach

In this work, authors propose a mixed approach in which relatively simple finite element models are used to support the optimization of a diagnostic system that is used to monitor vibration levels and rotor-dynamical behavior of the machine. The model is calibrated with experimental data recorded on the same rig that must be identified and monitored. The whole process is optimized to not interfere with normal operations of the rig, using common inertial sensor and tools and are available as standard instrumentation for this kind of applications. So at the end all the calibration activities can be performed normally without interrupting the activities of the rig introducing additional costs due to system unavailability.

Findings

Proposed approach was able to identify in a very simple and fast way the vibrational behavior of the investigated rig, also giving precious information concerning the anisotropic behavior of supports and their damping. All these data are quite difficult to be found in technical literature because they are quite sensitive to assembly tolerances and to many other factors. Dynamometric test rigs are an important application widely diffused for both road and rail vehicles. Also proposed procedure can be easily extended and generalized to a wide value of machine with horizontal rotors.

Originality/value

Most of the studies in literature are referred to electrical motors or turbomachines operating with relatively slow transients and constant inertial properties. For investigated machines both these conditions are not verified, making the proposed application quite unusual and original with respect to current application. At the same time, there is a wide variety of special machines that are usually marginally covered by standard testing methodologies to which the proposed approach can be successfully extended.

Details

World Journal of Engineering, vol. 21 no. 3
Type: Research Article
ISSN: 1708-5284

Keywords

Article
Publication date: 10 March 2022

X.R. Lü, Z. Liu, X.L. Lü and X. Wang

This study aims to improve the automatic leveling performance of tractor body in hilly and mountainous areas by designing a kind of controllable and adaptive leveling mechanism of…

Abstract

Purpose

This study aims to improve the automatic leveling performance of tractor body in hilly and mountainous areas by designing a kind of controllable and adaptive leveling mechanism of tractor body.

Design/methodology/approach

The mechanism is mainly composed of longitudinal slope leveling mechanism, transverse slope leveling mechanism and control components. According to the tractor body attitude in operation, the longitudinal slope leveling and lateral slope leveling can coordinate to realize the adaptive adjustment of tractor body. For this mechanism, the support mode of the linear three-point support and plane positioning combining is designed, and the leveling method of electromechanical combination is designed. The servo motor controls the longitudinal slope leveling mechanism through the reducer with self-locking function to realize the longitudinal leveling, and the servo driver controls the expansion and contraction of electric cylinder to realize lateral leveling. The designed mode can realize the relative independence and coordination of leveling in different directions.

Findings

The performance test results of the leveling mechanism are shown: the mechanism can work normally; the leveling accuracy can reach within 1°; and the leveling accuracy and stability can meet the design requirements. The leveling accuracy and stability of longitudinal slope are higher than that of lateral slope, and the coordination leveling effect of longitudinal slope and lateral slope is better than that of the independent leveling.

Originality/value

This study provides a technical reference for the design of leveling device of agricultural machines and tools in hilly and mountainous areas.

Details

Journal of Engineering, Design and Technology , vol. 22 no. 3
Type: Research Article
ISSN: 1726-0531

Keywords

Article
Publication date: 24 October 2023

Mohammad A. Hassanain and Zayed A. Albugami

Community centers play a socio-economic and urban role of combining different communal necessities, that serve inhabitants, at different neighborhoods in cities. Their role…

Abstract

Purpose

Community centers play a socio-economic and urban role of combining different communal necessities, that serve inhabitants, at different neighborhoods in cities. Their role emerged in importance as being a hub for improving and customizing quality of life experiences of the public. This research presents a code-based risk assessment tool for evaluating fire safety measures that can be adapted in the context of community centers. It also provides an exemplary case study to demonstrate its application.

Design/methodology/approach

The study identified the factors that render community centers as a high-risk type of facilities in fire events. Various fire codes and standards were reviewed to describe the relevant fire safety measures. A code-based fire risk assessment tool was developed and implemented, through a case study. A set of recommendations were developed to improve the fire safety conditions of the case study facility.

Findings

Several violations to fire safety were identified in the case study building. The findings led to identifying a set of recommendations to improve its fire safety conditions.

Practical implications

This research introduced a systematic approach to raise awareness about fire incidences and consequences in community centers, and provides facilities managers with a tool, to assess compliance based on international fire code requirements.

Originality/value

In fire events, community centers are considered as high-risk facilities that may lead to significant losses of human lives and damages to assets. It is significant to study the causes of fire, for ensuring effective prevention and safe operations.

Details

International Journal of Emergency Services, vol. 13 no. 1
Type: Research Article
ISSN: 2047-0894

Keywords

Open Access
Article
Publication date: 15 January 2024

Marcello Braglia, Francesco Di Paco, Roberto Gabbrielli and Leonardo Marrazzini

This paper presents a new and well-structured framework that aims to assess the current environmental impact from a Greenhouse Gas (GHG) emissions perspective. This tool includes…

559

Abstract

Purpose

This paper presents a new and well-structured framework that aims to assess the current environmental impact from a Greenhouse Gas (GHG) emissions perspective. This tool includes a new set of Lean Key Performance Indicators (KPIs), which translates the well-known logic of Overall Equipment Effectiveness in the field of GHG emissions, that can progressively detect industrial losses that cause GHG emissions and support decision-making for implementing improvements.

Design/methodology/approach

The new metrics are presented with reference to two different perspectives: (1) to highlight the deviation of the current value of emissions from the target; (2) to adopt a diagnostic orientation not only to provide an assessment of current performance but also to search for the main causes of inefficiencies and to direct improvement implementations.

Findings

The proposed framework was applied to a major company operating in the plywood production sector. It identified emission-related losses at each stage of the production process, providing an overall performance evaluation of 53.1%. The industrial application shows how the indicators work in practice, and the framework as a whole, to assess GHG emissions related to industrial losses and to proper address improvement actions.

Originality/value

This paper scrutinizes a new set of Lean KPIs to assess the industrial losses causing GHG emissions and identifies some significant drawbacks. Then it proposes a new structure of losses and KPIs that not only quantify efficiency but also allow to identify viable countermeasures.

Details

International Journal of Productivity and Performance Management, vol. 73 no. 11
Type: Research Article
ISSN: 1741-0401

Keywords

Book part
Publication date: 16 May 2024

Alessandro Lampo and Susana C. Silva

Battery electric vehicles (BEVs) are living up to their claims as consumers choose them more frequently. The increasing demand for sustainable vehicles translates into the global…

Abstract

Battery electric vehicles (BEVs) are living up to their claims as consumers choose them more frequently. The increasing demand for sustainable vehicles translates into the global need for specific components, materials, and infrastructures and drives the regulatory frameworks in each country. While BEVs offer environmental benefits and global business opportunities, the technology has not yet gained mainstream acceptance. Thus, this work aims to investigate the characteristics of BEV users and their role in the diffusion of products to larger segments, as this may vary from country to country. For this purpose, a survey based on the Unified Theory of Acceptance and Use of Technology 2 (UTAUT-2) (Venkatesh et al., 2012) framework and structural equation modeling (SmartPLS) was adopted. The results indicated that, except for the constructs of effort expectancy (EE) and social influence (SI), the predictors in the model performed well in this context. Current users are satisfied with their vehicles and are supportive of BEVs in the future. The analysis also revealed that in addition to the availability of financial resources, early adopters are attracted by new technologies in a way that leads them to make decisions outside of the traditional influence of the other members of society. It is suggested to leverage the perceived benefits of status, differentiation, or uniqueness motives, to appeal to those seeking to appear trendy and tech-savvy in society. Companies and policymakers should acknowledge the peculiarities of early customers in their communication strategies to reach a wider audience around the globe and encourage the adoption of BEV technology.

Details

Walking the Talk? MNEs Transitioning Towards a Sustainable World
Type: Book
ISBN: 978-1-83549-117-1

Keywords

Open Access
Article
Publication date: 16 April 2024

Michael Rachinger and Julian M. Müller

Business Model Innovation is increasingly created by an ecosystem of related companies. This paper aims to investigate the transition of a manufacturing ecosystem toward electric…

Abstract

Purpose

Business Model Innovation is increasingly created by an ecosystem of related companies. This paper aims to investigate the transition of a manufacturing ecosystem toward electric vehicles from a business model perspective.

Design/methodology/approach

The authors investigate an automotive manufacturing ecosystem that is in transition toward electric and electrified vehicles, conducting semi-structured interviews with 46 informants from 27 ecosystem members.

Findings

The results reveal that the actions of several ecosystem members are driven by regulations relating to emissions. Novel requirements regarding components and complementary offers necessitate the entry of actors from other industries and the formation of new ecosystem members. While the newly emerged ecosystem has roots in an established ecosystem, it relies on new value offers. Further, the findings highlight the importance of ecosystem governance, while the necessary degree of change in the members' business models depends on their roles and positions in the ecosystem. Therefore, upstream suppliers of components must perform business model adaptation, whereas downstream providers must perform more complex business model innovation.

Originality/value

The paper is among the first to investigate an entire manufacturing ecosystem and analyze its transition toward electric vehicles and the implications for business model innovation.

Details

Journal of Manufacturing Technology Management, vol. 35 no. 9
Type: Research Article
ISSN: 1741-038X

Keywords

1 – 10 of 53