Search results

1 – 10 of 137
Article
Publication date: 29 April 2014

Shuling Cui

Based on clarifying the structural difference between jade fibre and general polyester fibre, this paper aims to study the dyeing properties and dyeing adsorption mechanism of…

Abstract

Purpose

Based on clarifying the structural difference between jade fibre and general polyester fibre, this paper aims to study the dyeing properties and dyeing adsorption mechanism of jade fibre with disperse dye and cationic dye.

Design/methodology/approach

The chemical structure and microstructure of jade fibre were briefly explained comparing with ordinary polyester fibre. The dyeing rate curve and dyeing adsorption isotherm of disperse dyes and cationic dyes on jade fibre were, respectively, studied. The dyeing uptake, dyeing absorption mechanism, and the main dyeing process parameters were proposed.

Findings

Jade fibre can be dyed with cationic dye and disperse dye. The suitable exhaust dyeing process is 110°C and 40 minutes for disperse dye, 100°C and 60 minutes for cationic dye. The dyeing uptake on jade fibre with both disperse dyes or cationic dyes is much higher than that on general polyester fibre and acrylic fibre, and the dyeing adsorption mechanism belongs to the combination of Langmuir and Nernst adsorption for disperse dyes and Langmuir adsorption for cationic dyes. Comparing with ordinary polyester fibre, jade fibre has the advantage of low temperature dyeing and reduced effluent, as is significant to energy-saving and emission reduction.

Originality/value

Jade fibre is a new type of modified polyester fibre with the function of health protection and energy conservation. There are little technical data in the literature at present about the dyeing property of jade fibre.

Details

Pigment & Resin Technology, vol. 43 no. 3
Type: Research Article
ISSN: 0369-9420

Keywords

Article
Publication date: 2 February 2024

Dawu Shu, Shaolei Cao, Yan Zhang, Wanxin Li, Bo Han, Fangfang An and Ruining Liu

This paper aims to find a suitable solution to degrade the C.I. Reactive Red 24 (RR24) dyeing wastewater by using sodium persulphate to recycle water and inorganic salts.

Abstract

Purpose

This paper aims to find a suitable solution to degrade the C.I. Reactive Red 24 (RR24) dyeing wastewater by using sodium persulphate to recycle water and inorganic salts.

Design/methodology/approach

The effects of temperature, the concentration of inorganic salts and Na2CO3 and the initial pH value on the degradation of RR24 were studied. Furthermore, the relationship between free radicals and RR24 degradation effect was investigated. Microscopic routes and mechanisms of dye degradation were further confirmed by testing the degradation karyoplasmic ratio of the product. The feasibility of the one-bath cyclic dyeing in the recycled dyeing wastewater was confirmed through the properties of dye utilization and color parameters.

Findings

The appropriate conditions were 0.3 g/L of sodium persulphate and treatment at 95°C for 30 min, which resulted in a decolorization rate of 98.4% for the dyeing wastewater. Acidic conditions are conducive to rapid degradation of dyes, while ·OH or SO4· have a destructive effect on dyes under alkaline conditions. In the early stage of degradation, ·OH played a major role in the degradation of dyes. For sustainable cyclic dyeing of RR24, inorganic salts were reused in this dyeing process and dye uptake increased with the times of cycles. After the fixation, some Na2CO3 may be converted to other salts, thereby increasing the dye uptake in subsequent cyclic staining. However, it has little impact on the dye exhaustion rate and color parameters of dyed fabrics.

Originality/value

The recommended technology not only reduces the quantity of dyeing wastewater but also enables the recycling of inorganic salts and water, which meets the requirements of sustainable development and clean production.

Details

Pigment & Resin Technology, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0369-9420

Keywords

Article
Publication date: 12 September 2008

P.S. Vankar, R. Shanker, S. Dixit, D. Mahanta and S.C. Tiwari

The purpose of this paper is to evaluate the efficiency of ultrasonication on new natural dye obtained from leaves extract of Acer pectinatum Wallich using metal mordant for good…

Abstract

Purpose

The purpose of this paper is to evaluate the efficiency of ultrasonication on new natural dye obtained from leaves extract of Acer pectinatum Wallich using metal mordant for good cotton dyeing prospects.

Design/methodology/approach

For effective natural dyeing with leaves extract of Acer pectinatum Wallich, both conventional and sonication methods of dyeing were carried out using metal mordants. The purpose of using sonication was for improvement of dye uptake, improved dye adherence and good wash and light fastnesses. Results show marked improvement by the chosen dyeing method.

Findings

The superiority of sonicator dyeing over conventional dyeing in terms of enhanced resource productivity and, as a result, reduced wastes establishes it as the best available technique in the natural dyeing industry. Use of sonicator shows marked enhancement for cotton dyed fabric. Typical bath liquor to fabric ratio for conventional dyeing varies from 20:1 to 15:1 and for sonicator dyeing from only 12:1 to 10:1, thereby reducing specific water and energy consumption by, respectively, 30 and 50 per cent. The cycle time for dyeing was also reduced by 50 per cent and this would make possible more tonnage of fabric per unit time and lower waste generation for the dyeing process. This would also result in improved capacity utilisation leading to enhanced productivity levels in the dyehouses.

Research limitations/implications

Although metal mordanting with copper sulphate and potassium dichromate is not ecofriendly, yet only 2 per cent of these metal salts have been used to prepare different shades with leaves extract of Acer pectinatum Wallich.

Practical implications

The method developed for natural dyeing of cotton fabric using sonication in conjunction with metal mordanting has shown marked improvement.

Originality/value

The method developed for natural dyeing of cotton fabric using sonication in conjunction with metal mordanting has shown marked improvement in terms of dye adherence and fastness properties and can thus be recommended for industrial application.

Details

Pigment & Resin Technology, vol. 37 no. 5
Type: Research Article
ISSN: 0369-9420

Keywords

Article
Publication date: 3 July 2009

Padma S. Vankar, Rakhi Shanker and Samudrika Wijayapala

The purpose of this paper is to evaluate the efficiency of dyeing on cotton wool and silk fabrics with natural dye obtained from kitchen waste of dry skin extract of Allium cepa.

1612

Abstract

Purpose

The purpose of this paper is to evaluate the efficiency of dyeing on cotton wool and silk fabrics with natural dye obtained from kitchen waste of dry skin extract of Allium cepa.

Design/methodology/approach

The dry skin of onion produces natural dye which has been used for dyeing textiles. In the present study, innovative dyeing with onion has been shown to give good dyeing results. Pretreatment with 2 per cent metal mordant and using 5 per cent of plant extract (owf) was found to be optimum and showed very good fastness properties for cotton, wool and silk dyed fabrics. For effective natural dyeing with dry skin extract of Allium cepa, conventional method of dyeing was carried out using metal mordants. The purpose of using this source was with an idea to produce value addition dyed product from kitchen waste as the dye has very good potential of uptake, adherence to the fabric and has good wash and light fastnesses. Results show very attractive hue colours.

Findings

The preference of using easily and cheaply available material for dyeing by conventional dyeing lowers the cost of natural dyeing and enhances resource productivity and as a result, reduces waste. This makes onion scale one of the easily available materials for natural dyeing industry.

Research limitations/implications

Although metal mordanting with copper sulphate and potassium dichromate are not ecofriendly but we have used only 2 per cent of these metal salts to prepare different shades with dry scales of Allium cepa extract.

Practical implications

The method developed for natural dyeing of cotton, silk and wool fabrics using skin extract of allium in conjunction with metal mordanting has shown very deep coloration. The stepwise dyeing of cotton fabric with metal mordant by the natural dye Allium cepa showed that the stepwise dyeing process gave very good result. The dye uptake in case of stepwise dyeing was from 65‐68 per cent in the case of cotton, 70‐74 per cent in silk and 78‐82 per cent in wool with different mordants.

Originality/value

The method developed for natural dyeing of cotton, silk and wool fabrics using skin extract of allium in conjunction with metal mordanting has shown marked improvement in terms of dye adherence and fastness properties and can thus be recommended for industrial application.

Details

Pigment & Resin Technology, vol. 38 no. 4
Type: Research Article
ISSN: 0369-9420

Keywords

Article
Publication date: 9 November 2022

Ali A. Ali, Malek Alshukur, Ashraf M. Ashmawy, Ammar M. Mahmoud, Ahmed Saleh, Hesham S. Nassar and Bo Yao

This study aims to show the dyeing behaviour of polyester fabrics using four novel heterocyclic disperse dyes.

Abstract

Purpose

This study aims to show the dyeing behaviour of polyester fabrics using four novel heterocyclic disperse dyes.

Design/methodology/approach

The four dyes were synthesized based on 5, 5'-(1, 4-phenylene) bis (1, 3, 4-thiadiazol-2-amine) as a diazonium compound. The UV/Vis absorption spectroscopic data of these disperse dyes while dyeing polyester fabrics were investigated. Following this, the dyeing properties of these dyes on polyester fabrics were investigated under acid condition.

Findings

The results showed that increasing the dyeing temperature from 80°C to 100°C led to an increase in dye uptake for all dyes, but further increases of the temperature to 130°C led to higher dye uptake for dye 3 as the dye exhaustion increased by about 50% from 55.9% to 91.4%.

Originality/value

This study is important as it introduces new dyes for the dyeing of polyethylene terephthalate (PET) fibres with colours that range from yellowish orange to bluish yellow and scarlet red and all with excellent brightness, levelness and depth of shade.

Details

Research Journal of Textile and Apparel, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1560-6074

Keywords

Article
Publication date: 29 January 2020

Jiyoung Park and Youngmi Park

Equisetum arvense L. (Equisetum) is a weed that is very difficult to remove because of its deep roots. The purpose of this paper is to examine the dyeability and antioxidant…

Abstract

Purpose

Equisetum arvense L. (Equisetum) is a weed that is very difficult to remove because of its deep roots. The purpose of this paper is to examine the dyeability and antioxidant activity of Equisetum extracted from hot water.

Design/methodology/approach

Dry Equisetum was extracted at 100°C for 2 h, and its dyeability according to time, temperature and repetition cycle, and the mordant effect by skim milk powder were confirmed. The color change according to the K/S, fastness to rubbing, light, sweat and washing, UV protection rate and antioxidant activity were evaluated.

Findings

UV‒Vis spectroscopy showed that the Equisetum extract contained a flavonoid compound. The addition of Equisetum to artificial silk produced the greatest color difference when dyed at 60°C for 1 h, and the K/S value increased slightly after the pre-mordant treatment. In the fastness test, light and washing had no significant effect, but the fastness to rubbing was very good at Grades 4 and 5, and there was also a considerable improvement in the UV protection rate. The antioxidant activity of the extract was confirmed by an analysis of the radical scavenging ability through the DPPH (1,1-diphenyl 2-picryl-hydrazyl) and ABTS ([2,2’- azino-bis (3-ethylbenzothialzoline-6-sulfonic acid) diammonium salt]) tests.

Originality/value

These results revealed a new natural antioxidant-containing dyestuff, weed grass, which is easy to obtain, easy to use as a dyeing material and has excellent antioxidant activity in an extracted dye solution and dyeing fabric.

Details

International Journal of Clothing Science and Technology, vol. 32 no. 3
Type: Research Article
ISSN: 0955-6222

Keywords

Article
Publication date: 29 March 2024

Rıza Atav and Özge Çolakoğlu

The purpose of this study is to determine the effect of laser treatment on disperse dye-uptake and fastness values of polyester fabrics. Furthermore, it was aimed to evaluate…

Abstract

Purpose

The purpose of this study is to determine the effect of laser treatment on disperse dye-uptake and fastness values of polyester fabrics. Furthermore, it was aimed to evaluate colors directly over the photos of fabric samples instead of color measuring with spectrophotometer which is thought to be useful in terms of online digital color assessment.

Design/methodology/approach

In this study, 100% polyester (150 denier) single jersey knitted fabrics (weight: 145 g/m2, course density: 15 loops/cm, wale density: 24 loops/cm) were used in the trials. The effect of laser treatments before and after dyeing on color was investigated. Laser treatments were applied to fabrics at different resolutions (20, 25 and 30 dpi) and pixel times (60, 80 and 100 µs) before dyeing. The power of the laser beam was 210 W and the wavelength was 10.6 µm. In order to determine the effect of laser treatment on polyester; FTIR analysis, SEM-EDX analysis and bursting strength tests were applied to untreated and treated fabric samples.

Findings

It was found that treatments with laser have a significant effect on disperse dye-uptake of polyester fibers, and for this reason laser-treated fabrics were dyed in darker shade. Furthermore, it was determined that the samples treated at 30 dpi started to melt and the fabric was damaged considerably, but the fabrics treated at 20 and 25 dpi were not affected at all. Another result obtained regarding the use of laser technology in polyester fabrics is that if some areas of fabrics are not treated with laser and some other areas are treated with laser at 20 dpi 60 µs and 25 dpi 60 µs, it will be possible to obtain patterns containing three different shades of the same color on the fabric.

Originality/value

When the literature is examined, it is seen that there are various studies on the dyeability and patterning of polyester fabrics with disperse dyes by laser technology. As it is known, today color measurement is done digitally using a spectrophotometer. However, when we look at a photograph on computer screens, the colors we see are defined by RGB (red-green-blue) values, while in the spectrophotometer they are defined by L*a*b* (L*: lightness-darkness, a*: redness-greenness, b*: yellowness-blueness) values. Especially when it is desired to produce various design products by creating patterns with laser technology, it would be more useful to show the color directly to the customer on the computer screen and to be able to speak over the same values on the color. For this reason, in this study, the color measurement of the fabric samples was not made with a spectrophotometer, instead, the RGB values obtained from the photographs of the samples were converted into L*a*b* values with MATLAB and interpreted, that is, a digital color evaluation was made on the photographs. Therefore, it is believed that this study will contribute to the literature.

Details

International Journal of Clothing Science and Technology, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0955-6222

Keywords

Abstract

Graphical abstract

Purpose

This study aims to synthesize new disperse dyes based on novel pyrazolyl quinolinone derivatives EQ1 and EQ2 and evaluate their characteristics after dyeing them on a polyester fabric.

Design/methodology/approach

New dispersed dyes based on pyrazolyl quinolinone derivatives were prepared and confirmed by different analyses, such as infrared spectroscopy, elemental microanalysis and nuclear magnetic resonance spectroscopy. They were dyed on a polyester fabric. The characteristics of dyed polyester were determined by color measurements such as a*, b*, L*, C*, E, Ho, R% and color strength. The electronic structures of EQ1 and EQ2 in gaseous state were investigated using density functional theory/B3LYP/6-311++G (d, p) level of theory.

Findings

The suitability of the prepared dyestuffs for dyeing on polyester fabrics has been investigated. The study was concerned with comparing the contrasting depth of shade and levelness. The study was concerned mainly with dye uptake and color measurements at two different temperatures. The results showed that the exhaustion values of dyes inside the polyester at 130°C were higher than those obtained at conventional dyeing temperature (100°C). The exhaustion values of EQ2 were greater than those of EQ1 at 130°C with 2.2%, while the brightness of EQ2 was higher than that of EQ1 at the two investigated temperatures. The results of molecular orbital calculations show that the studied compounds are planar. In addition, the ionization potential of EQ1 was lower than that of EQ2. The results of the theoretical study helped in understanding the dyeing behavior of the investigated azo dyes.

Originality/value

The prepared disperse dyes based on pyrazolyl quinolinone derivatives could be used in textile dyeing of polyester on an industrial scale.

Details

Pigment & Resin Technology, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0369-9420

Keywords

Article
Publication date: 27 January 2020

Hossein Barani and Homa Maleki

Finding blue colorants from natural sources is extremely difficult and, usually, the anthocyanin compounds are used for producing the blue color. This study aims to apply the Red…

Abstract

Purpose

Finding blue colorants from natural sources is extremely difficult and, usually, the anthocyanin compounds are used for producing the blue color. This study aims to apply the Red Cabbage as a natural colorant to obtain different colors on wool yarn, as well as specify the optimum dyeing condition by response surface methodology for obtaining a blue color.

Design/methodology/approach

The effect of dyeing process parameters such as mordant concentration, dyeing time, pH of dyeing bath and dyeing temperature examined in the color characteristics of the dyed wool samples.

Findings

The obtained results indicated that the diverse colors achieve by varying the dyeing process parameters, which is in the range of 26° up to 271°. The non-mordanted dyed wool samples showed a red and red brownish color (Hue angle = 26° up to 70°), and the mordanted dyed wool samples showed a blue and blue-greenish color (Hue angle = 230° up to 271°). The obtained blue color with the optimized dyeing condition presented a considerable good wash and lightfastness.

Originality/value

This study provides a promising application of Red Cabbage as a natural colorant for obtaining different colors by varying the dyeing process parameters such as pH and stannous ion concentrations. The stannous ions yielded a co-pigmentation and presented a blue color on wool fibers, which is extremely difficult to obtain with natural colorant.

Details

Pigment & Resin Technology, vol. 49 no. 3
Type: Research Article
ISSN: 0369-9420

Keywords

Article
Publication date: 1 May 2008

Weigang Cui, Xin Liu, Xiaolin Shen, Xuqiang Peng and Weilin Xu

In this paper, silk powder around 1.5 micrometer average in size was developed and its dyeing property was compared with normal silk fiber. The results show that silk powder has a…

Abstract

In this paper, silk powder around 1.5 micrometer average in size was developed and its dyeing property was compared with normal silk fiber. The results show that silk powder has a very high dye uptake property and can be dyed at room temperature; it can also be used to improve the dyeing property of some materials when it acts as a kind of additive agent. The K/S value of silk fiber is higher than that of silk powder. Their K/S value of silk fiber and silk superfine powder are influenced largely by the dye concentration. The WXRD diffraction curves showed that the crystallinity of silk powder is lower than that of silk fiber. FTIR spectra of silk powder showed that the intensity peak of CH2-antisymmetrical stretching vibration largely decreased, and the peak of C=O symmetrical stretching vibration of amid bond moved to the high wave-number. TG patterns of samples showed that water (moisture) could be easily removed from the powder when the temperature was over 70°C, and the initial decomposition temperature of silk powder increased from 262.5°C to 277.5°C. Moreover, the silk powder showed higher residue than that of silk fiber at 600°C.

Details

Research Journal of Textile and Apparel, vol. 12 no. 2
Type: Research Article
ISSN: 1560-6074

Keywords

1 – 10 of 137