Search results

1 – 10 of 183
Article
Publication date: 20 November 2023

A.K. Abdul Hakeem, Priya S., Ganga Bhose and Sivasankaran Sivanandam

The purpose of this study is to provide that porous media and viscous dissipation are crucial considerations when working with hybrid nanofluids in various applications.Recent…

Abstract

Purpose

The purpose of this study is to provide that porous media and viscous dissipation are crucial considerations when working with hybrid nanofluids in various applications.Recent years have witnessed significant progress in optimizing these fluids for enhanced heat transfer within porous (Darcy–Forchheimer) structures, offering promising solutions for various industries seeking improved thermalmanagement and energy efficiency.

Design/methodology/approach

The first step is to transform the original partial differential equations into a system of first-order ordinary differential equations (ODEs). The fourth-order Runge–Kutta method is chosen for its accuracy in solving ODEs. The present study investigates the free convective boundary layer flow of hybrid nanofluids over a moving thin inclined needle with the slip flow brought about by inclined Lorentz force and Darcy–Forchheimer porous matrix, viscous dissipation.

Findings

It is found that slip conditions (velocity and Thermal) exist for a range of the natural convection boundary layer flow. In the hybrid nanofluid flow, which consists of Al2O3 and Fe3O4 are nanoparticles, H2OC2H6O2 (50:50) are considered as the base fluid. The consequence of the governing parameter on the momentum and temperature profile distribution is graphically depicted. The range of the variables is 1 ≤ M ≤ 4, 1 ≤ d ≤ 2.5, 1 ≤ δ ≤ 4, 1 ≤ Fr ≤ 7, 1 ≤ Kr ≤ 7 and 0.5≤λ ≤ 3.5. The Nusselt number and skin friction factors are used to calculate the numerical values of various parameters, which are displayed in Table 4. These analyses elucidate that upsurges in the value of the Fr noticeably diminish the momentum and temperature. It is investigated to see if the contemporary results are in outstanding promise with the outcomes reported in earlier works.

Practical implications

The results can be very helpful to improve the energy efficiency of thermal systems.

Social implications

The hybrid nanofluids in heat transfer have the potential to improve the energy efficiency and performance of a wide range of systems.

Originality/value

This study proposes that in the combined effects of hybrid nanofluid properties, the inclined Lorentz force, the Darcy–Forchheimer model for porous media and viscous dissipation on the boundary layer flow of a conducting fluid over a moving thin inclined needle. Assessing the potential practical applications of the hybrid nanofluids in inclined needles, this could involve areas such as biomedical engineering, drug delivery systems or microfluidic devices. In future should explore the benefits and limitations of using hybrid nanofluids in these applications.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 34 no. 1
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 13 December 2018

Sadia Rashid, Tasawar Hayat, Sumaira Qayyum, Muhammad Ayub and Ahmed Alsaedi

The purpose of this study is to study flow caused by rotating frame. Effects of Darcy–Forchheimer and porous medium are considered to study velocity field. Concentration field is…

Abstract

Purpose

The purpose of this study is to study flow caused by rotating frame. Effects of Darcy–Forchheimer and porous medium are considered to study velocity field. Concentration field is discussed in presence of activation energy. Darcy–Forchheimer in a rotating frame is examined. Flow because of stretched sheet fills the porous space. Binary chemical reaction is entertained. Resulting system is numerically solved. The plots are arranged for rotational parameter, porosity parameter, coefficients of inertia, Prandtl number and Schmidt number. It is revealed that rotation on velocity has opposite effects when compared with temperature and concentration distributions. Skin friction coefficients and local Nusselt and Sherwood numbers are numerically discussed.

Design/methodology/approach

Darcy–Forchheimer in a rotating frame is examined. Flow because of stretched sheet fills the porous space. Binary chemical reaction is entertained. Resulting system is numerically solved. The plots are arranged for rotational parameter, porosity parameter, coefficients of inertia, Prandtl number and Schmidt number. It is revealed that rotation on velocity has opposite effects when compared with temperature and concentration distributions. Skin friction coefficients and local Nusselt and Sherwood numbers are numerically discussed.

Findings

The major findings here are as follows: an addition in porosity λ causes decay in velocity f′(η) while there is opposite behavior for temperature θ(η) and concentration ϕ(η) fields. θ and ϕ via β have similar results qualitatively. There is an opposite behavior of Pr on temperature and concentration. Inverse behavior of λ on ϕ and wall mass flux is noted. Concentration ϕ is decreasing function of reaction rate constant σ. Skin friction coefficient has similar qualitative results for λ and β. Temperature gradient −θ(0) is decreased by λ and β.

Originality/value

Here, the authors are interested to investigate rotating flow in a porous space. Dissipation and radiation effects are neglected. Effects of activation energy are studied. This work is not done yet in literature.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 29 no. 3
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 12 October 2018

Tasawar Hayat, Tayyaba Ayub, Taseer Muhammad, Ahmed Alsaedi and M. Mustafa

The purpose of this paper is to construct mathematical model for squeezed flow of carbon-water nanofluid between parallel disks considering Darcy–Forchheimer porous medium

Abstract

Purpose

The purpose of this paper is to construct mathematical model for squeezed flow of carbon-water nanofluid between parallel disks considering Darcy–Forchheimer porous medium. Thermal conductivity of carbon nanotubes is estimated through the well-known Xue model. Such research work is not carried out in the past even in the absence of Darcy–Forchheimer porous space. Forchheimer equation is preferred here to account for both low and high velocity inertial effects. Researchers also found that dispersion of carbon nanotubes in water elevates the thermal conductivity of resulting nanofluid by 100 per cent.

Design/methodology/approach

Homotopy analysis method (HAM) is used for the convergent series solutions of the governing system.

Findings

Nusselt number at the lower disk increases when squeezing parameter Sq enlarges. This illustrates that heat transfer rate at the lower wall can be enhanced by increasing the squeezing velocity of the lower disk. The results demonstrate a decreasing trend in temperature profile for increasing volume fraction of carbon nanotubes. Moreover, improvement in heat transfer rate because of existence of carbon nanotubes is also apparent. A significant enhancement in temperature profile is depicted when inertial permeability coefficient is enhanced. Skin friction coefficients at the lower and upper disks are higher for MWCNTs in comparison to the SWCNTs.

Originality/value

To the best of author’s knowledge, no such consideration has been given in the literature yet.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 28 no. 12
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 16 April 2024

Latifah Falah Alharbi, Umair Khan, Aurang Zaib and Anuar Ishak

A novel type of heat transfer fluid known as hybrid nanofluids is used to improve the efficiency of heat exchangers. It is observed from literature evidence that hybrid nanofluids…

Abstract

Purpose

A novel type of heat transfer fluid known as hybrid nanofluids is used to improve the efficiency of heat exchangers. It is observed from literature evidence that hybrid nanofluids outperform single nanofluids in terms of thermal performance. This study aims to address the stagnation point flow induced by Williamson hybrid nanofluids across a vertical plate. This fluid is drenched under the influence of mixed convection in a Darcy–Forchheimer porous medium with heat source/sink and entropy generation.

Design/methodology/approach

By applying the proper similarity transformation, the partial differential equations that represent the leading model of the flow problem are reduced to ordinary differential equations. For the boundary value problem of the fourth-order code (bvp4c), a built-in MATLAB finite difference code is used to tackle the flow problem and carry out the dual numerical solutions.

Findings

The shear stress decreases, but the rate of heat transfer increases because of their greater influence on the permeability parameter and Weissenberg number for both solutions. The ability of hybrid nanofluids to strengthen heat transfer with the incorporation of a porous medium is demonstrated in this study.

Practical implications

The findings may be highly beneficial in raising the energy efficiency of thermal systems.

Originality/value

The originality of the research lies in the investigation of the Darcy–Forchheimer stagnation point flow of a Williamson hybrid nanofluid across a vertical plate, considering buoyancy forces, which introduces another layer of complexity to the flow problem. This aspect has not been extensively studied before. The results are verified and offer a very favorable balance with the acknowledged papers.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 3 May 2019

Muhammad Ijaz Khan, Madiha Rashid, Tasawar Hayat, Niaz B. Khan and Ahmed Alsaedi

This paper aims to examine the three-dimensional (3D) flow of carbon nanotubes (CNTs) due to bidirectional nonlinearly stretching surface by considering porous medium

Abstract

Purpose

This paper aims to examine the three-dimensional (3D) flow of carbon nanotubes (CNTs) due to bidirectional nonlinearly stretching surface by considering porous medium. Characteristics of both single-walled CNTs and multi-walled CNTs are discussed by considering Xue model. Darcy–Forchheimer model is used for flow saturating porous medium.

Design/methodology/approach

Optimal homotopy analysis method is used for the development of series solutions.

Findings

The authors deal with 3D Darcy–Forchheimer flow of CNTs over a nonlinearly stretching surface. Heat transport mechanism is discussed in the presence of Xue model. The homogeneous and heterogeneous effects are also accounted. The mathematical modeling is computed using boundary-layer approximations.

Originality/value

No such work has been done yet in the literature.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 29 no. 6
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 9 August 2021

Jawad Raza, Sumera Dero, Liaquat Ali Lund and Zurni Omar

The purpose of study is to examine the dual nature of the branches for the problem of Darcy–Forchheimer porous medium flow of rotating nanofluid on a linearly stretching/shrinking…

Abstract

Purpose

The purpose of study is to examine the dual nature of the branches for the problem of Darcy–Forchheimer porous medium flow of rotating nanofluid on a linearly stretching/shrinking surface under the field of magnetic influence. The dual nature of the branches confronts the uniqueness and existence theorem, moreover, mathematically it is a great achievement. For engineering purposes, this study applied a linear stability test on the multiple branches to determine which solution is physically reliable (stable).

Design/methodology/approach

Nanofluid model has been developed with the help of Buongiorno model. The partial differential equations in space coordinates for the law of conservation of mass, momentum and energy have been transformed into ordinary differential equations by introducing the similarity variables. Two numerical techniques, namely, the shooting method in Maple software and the three-stage Lobatto IIIA method in Matlab software, have been used to find multiple branches and to accomplish stability analysis, respectively.

Findings

The parametric investigation has been executed to find the multiple branches and explore the effects on skin friction, Sherwood number, Nusselt number, concentration and temperature profiles. The findings exhibited the presence of dual branches only in the case of a shrinking sheet.

Originality/value

The originality of work is a determination of multiple branches and the performance of the stability analysis of the branches. It has also been confirmed that such a study has not yet been considered in the previous literature.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 32 no. 5
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 6 December 2020

S. Das, Akram Ali and R.N. Jana

In this communication, a theoretical simulation is aimed to characterize the Darcy–Forchheimer flow of a magneto-couple stress fluid over an inclined exponentially stretching…

Abstract

Purpose

In this communication, a theoretical simulation is aimed to characterize the Darcy–Forchheimer flow of a magneto-couple stress fluid over an inclined exponentially stretching sheet. Stokes’ couple stress model is deployed to simulate non-Newtonian microstructural characteristics. Two different kinds of thermal boundary conditions, namely, the prescribed exponential order surface temperature (PEST) and prescribed exponential order heat flux, are considered in the heat transfer analysis. Joule heating (Ohmic dissipation), viscous dissipation and heat source/sink impacts are also included in the energy equation because these phenomena arise frequently in magnetic materials processing.

Design/methodology/approach

The governing partial differential equations are transformed into nonlinear ordinary differential equations (ODEs) by adopting suitable similar transformations. The resulting system of nonlinear ODEs is tackled numerically by using the Runge–Kutta fourth (RK4)-order numerical integration scheme based on the shooting technique. The impacts of sundry parameters on stream function, velocity and temperature profiles are viewed with the help of graphical illustrations. For engineering interests, the physical implication of the said parameters on skin friction coefficient, Nussult number and surface temperature are discussed numerically through tables.

Findings

As a key outcome, it is noted that the augmented Chandrasekhar number, porosity parameter and Forchhemeir parameter diminish the stream function as well as the velocity profile. The behavior of the Darcian drag force is similar to the magnetic field on fluid flow. Temperature profiles are generally upsurged with the greater magnetic field, couple stress parameter and porosity parameter, and are consistently higher for the PEST case.

Practical implications

The findings obtained from this analysis can be applied in magnetic material processing, metallurgy, casting, filtration of liquid metals, gas-cleaning filtration, cooling of metallic sheets, petroleum industries, geothermal operations, boundary layer resistors in aerodynamics, etc.

Originality/value

From the literature review, it has been found that the Darcy–Forchheimer flow of a magneto-couple stress fluid over an inclined exponentially stretching surface with heat flux conditions is still scarce. The numerical data of the present results are validated with the already existing studies under limited cases and inferred to have good concord.

Details

World Journal of Engineering, vol. 18 no. 2
Type: Research Article
ISSN: 1708-5284

Keywords

Article
Publication date: 16 August 2019

S. Bilal, Muhammad Sohail and Rahila Naz

The purpose of this paper is to highlight the studies of momentum and transmission of heat on mixed convection boundary layer Darcy‒Forchheimer flow of Casson liquid over a linear…

Abstract

Purpose

The purpose of this paper is to highlight the studies of momentum and transmission of heat on mixed convection boundary layer Darcy‒Forchheimer flow of Casson liquid over a linear extending surface in a porous medium. The belongings of homogeneous‒heterogeneous retorts are also affianced. The mechanism of heat transmission is braced out in the form of Cattaneo‒Christov heat flux. Appropriate restorations are smeared to revolutionize coupled nonlinear partial differential equations conforming to momentum, energy and concentration of homogeneous‒heterogeneous reaction equations into coupled nonlinear ordinary differential equations (ODEs).

Design/methodology/approach

Numerical elucidations of the transmogrified ODEs are accomplished via a dexterous and trustworthy scheme, namely optimal homotopy analysis method. The convergence of planned scheme is exposed with the support of error table.

Findings

The exploration of mixed convection Darcy‒Forchheimer MHD boundary layer flow of incompressible Casson fluid by the linear stretched surface with Cattaneo‒Christov heat flux model and homogeneous‒heterogeneous reactions is checked in this research. Imitations of the core subsidized flow parameters on velocity, temperature and concentration of homogeneous‒heterogeneous reactions solutions are conscripted. From the recent deliberation, remarkable annotations are as follows: non-dimensional velocities in xa− and xb− directions shrink, whereas the non-dimensional temperature upsurges when the Casson fluid parameter ameliorates. Similar impact of Casson fluid parameter, magnetic parameter, mixed convection parameter, inertia parameter, and porosity parameter is observed for both the components of velocity field. An escalation in magnetic parameter shows the opposite attitude of temperature field as compared with velocity profile. Similar bearing of Casson fluid parameter is observed for both temperature and velocity fields. Enhancement in concentration rate is observed for growing values of (Ns) and (Sc), and it reduces for (k1). Both temperature and concentration of homogeneous‒heterogeneous upturn by mounting the magnetic parameter. Demeanor of magnetic parameter, Casson fluid parameter, heat generation parameter is opposite to that of Prandtl number and thermal relaxation parameter on temperature profile.

Practical implications

In many industrial and engineering applications, the current exploration is utilized for the transport of heat and mass in any system.

Originality/value

As far as novelty of this work is concerned this is an innovative study and such analysis has not been considered so far.

Details

Multidiscipline Modeling in Materials and Structures, vol. 15 no. 6
Type: Research Article
ISSN: 1573-6105

Keywords

Article
Publication date: 17 October 2018

T. Hayat, Arsalan Aziz, Taseer Muhammad and A. Alsaedi

The purpose of this study is to examine the Darcy–Forchheimer flow of viscous nanoliquid because of a rotating disk. Thermophoretic diffusion and random motion aspects are…

80

Abstract

Purpose

The purpose of this study is to examine the Darcy–Forchheimer flow of viscous nanoliquid because of a rotating disk. Thermophoretic diffusion and random motion aspects are retained. Heat and mass transfer features are analyzed through convective conditions.

Design/methodology/approach

The governing systems are solved numerically by the shooting technique.

Findings

Higher porosity parameter and Forchheimer number Fr depict similar trend for both velocity profiles f' and g. Both temperature and concentration profiles show increasing behavior for higher Forchheimer number Fr. An increase in Prandtl number Pr corresponds to lower temperature profile, while opposite trend is noticed for thermal Biot number. Larger concentration Biot number exhibits increasing behavior for both concentration and its associated layer thickness.

Originality/value

To the best of the author’s knowledge, no such consideration has been given in the literature yet.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 28 no. 11
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 9 January 2020

Lei Wang, Yang Cai, Wei-Wei Wang, Run-Zhe Liu, Di Liu, Fu-Yun Zhao and Hanqing Wang

This paper aims to numerically investigate the magnetohydrodynamic (MHD) convection heat transfer of nanofluid inside a differentially heated enclosure with various fin…

Abstract

Purpose

This paper aims to numerically investigate the magnetohydrodynamic (MHD) convection heat transfer of nanofluid inside a differentially heated enclosure with various fin morphologies.

Design/methodology/approach

The fluid flow within the cavity was governed by N-S equations while it within porous medium was solved by the non-Darcy model, called the Darcy–Forchheimer model based on representative element-averaging method. Empirical correlations from experimental data are used to evaluate the effective thermal conductivity and dynamic viscosity. Relevant governing parameters, including thermal Rayleigh number (105-107), Hartmann number (0-50), Darcy number (10−6-10−1), thermal conductivity ratio of porous matrix (1-103), nanoparticles volume fraction (0-0.04) and topology designs of porous fins, are sensitively varied to identify their effects and roles on the fluid flow and heat transfer. Particularly, heatlines are used to investigate the mechanism of heat transport.

Findings

Numerical results demonstrate that the predictions of average Nusselt number are augmented by using more porous fins with high permeability, and this effect becomes opposite in tiny Darcy numbers. Particularly, for high Darcy and Rayleigh numbers, the shortest fins could achieve the best performance of heat transfer. In addition, the prediction of average Nusselt number reduces with an increase in Hartmann numbers. An optimal nanoparticles concentration also exists to maximize heat transfer enhancement. Finally, numerical correlations for the average Nusselt number were proposed as functions of these governing parameters.

Practical implications

Present work could benefit the thermal design of electronic cooling and thermal carriers in nanofluid engineering.

Social implications

Present work could benefit the thermal design of electronic cooling and thermal carriers in nanofluid engineering. In addition, optimum thermal removals could enhance the lifetime of electronics, therefore reducing the cost of energy and materials.

Originality/value

To the best knowledge of authors, there are not any studies considering the synergetic effects of porous fins on MHD convection of nanofluids. Present work could benefit the thermal design of electronic cooling and thermal carriers in nanofluid engineering.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 30 no. 8
Type: Research Article
ISSN: 0961-5539

Keywords

1 – 10 of 183