To read this content please select one of the options below:

On Darcy-Forchheimer squeezed flow of carbon nanotubes between two parallel disks

Tasawar Hayat (Department of Mathematics, Quaid-I-Azam University, Islamabad, Pakistan and Nonlinear Analysis and Applied Mathematics (NAAM) Research Group, Department of Mathematics, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia)
Tayyaba Ayub (Department of Mathematics, Quaid-I-Azam University, Islamabad, Pakistan)
Taseer Muhammad (Department of Mathematics, Government College Women University, Sialkot, Pakistan)
Ahmed Alsaedi (Nonlinear Analysis and Applied Mathematics (NAAM) Research Group, Department of Mathematics, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia)
M. Mustafa (School of Natural Sciences (SNS), National University of Sciences and Technology (NUST), Islamabad, Pakistan)

International Journal of Numerical Methods for Heat & Fluid Flow

ISSN: 0961-5539

Article publication date: 12 October 2018

Issue publication date: 30 October 2018

75

Abstract

Purpose

The purpose of this paper is to construct mathematical model for squeezed flow of carbon-water nanofluid between parallel disks considering Darcy–Forchheimer porous medium. Thermal conductivity of carbon nanotubes is estimated through the well-known Xue model. Such research work is not carried out in the past even in the absence of Darcy–Forchheimer porous space. Forchheimer equation is preferred here to account for both low and high velocity inertial effects. Researchers also found that dispersion of carbon nanotubes in water elevates the thermal conductivity of resulting nanofluid by 100 per cent.

Design/methodology/approach

Homotopy analysis method (HAM) is used for the convergent series solutions of the governing system.

Findings

Nusselt number at the lower disk increases when squeezing parameter Sq enlarges. This illustrates that heat transfer rate at the lower wall can be enhanced by increasing the squeezing velocity of the lower disk. The results demonstrate a decreasing trend in temperature profile for increasing volume fraction of carbon nanotubes. Moreover, improvement in heat transfer rate because of existence of carbon nanotubes is also apparent. A significant enhancement in temperature profile is depicted when inertial permeability coefficient is enhanced. Skin friction coefficients at the lower and upper disks are higher for MWCNTs in comparison to the SWCNTs.

Originality/value

To the best of author’s knowledge, no such consideration has been given in the literature yet.

Keywords

Citation

Hayat, T., Ayub, T., Muhammad, T., Alsaedi, A. and Mustafa, M. (2018), "On Darcy-Forchheimer squeezed flow of carbon nanotubes between two parallel disks", International Journal of Numerical Methods for Heat & Fluid Flow, Vol. 28 No. 12, pp. 2784-2800. https://doi.org/10.1108/HFF-06-2017-0250

Publisher

:

Emerald Publishing Limited

Copyright © 2018, Emerald Publishing Limited

Related articles