Search results

1 – 10 of over 3000
Article
Publication date: 8 March 2011

Ahmet Refik Bahadir and Teymuraz Abbasov

The paper aims to investigate the effect of the electromagnetic field on the convective events which occur when electrically conducting fluid is squeezed between two parallel disks

Abstract

Purpose

The paper aims to investigate the effect of the electromagnetic field on the convective events which occur when electrically conducting fluid is squeezed between two parallel disks.

Design/methodology/approach

The effects of the current occurring due to the direct voltage power supply at the thin electrical conducting fluid layer squeezed between the parallel disks, the magnetic field inducted by this current, and Ohmic heating on the squeezing process and heat convection are considered. Both approximate analytical and numerical solutions of the problem are obtained and a good agreement is observed between them.

Findings

The effects of the basic parameters such as Hartmann number, Reynolds number, the ratio of the distance between the disks to the radius of the disks, Prandtl number, Eckert number, heat conduction, and electric current on the squeezing event, and load capacity of the fluid between two parallel disks are able to be determined from the solutions. These solutions also enable the effects of the basic parameters such as Hartmann number, Reynolds number, the ratio of the distance between the disks to the radius of the disks, Prandtl number, Eckert number, heat conduction, and electric current on the squeezing event and load capacity of the fluid between two parallel disks to be determined.

Originality/value

Some important results and comparisons are presented graphically.

Details

Industrial Lubrication and Tribology, vol. 63 no. 2
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 12 October 2018

Tasawar Hayat, Tayyaba Ayub, Taseer Muhammad, Ahmed Alsaedi and M. Mustafa

The purpose of this paper is to construct mathematical model for squeezed flow of carbon-water nanofluid between parallel disks considering Darcy–Forchheimer porous medium…

Abstract

Purpose

The purpose of this paper is to construct mathematical model for squeezed flow of carbon-water nanofluid between parallel disks considering Darcy–Forchheimer porous medium. Thermal conductivity of carbon nanotubes is estimated through the well-known Xue model. Such research work is not carried out in the past even in the absence of Darcy–Forchheimer porous space. Forchheimer equation is preferred here to account for both low and high velocity inertial effects. Researchers also found that dispersion of carbon nanotubes in water elevates the thermal conductivity of resulting nanofluid by 100 per cent.

Design/methodology/approach

Homotopy analysis method (HAM) is used for the convergent series solutions of the governing system.

Findings

Nusselt number at the lower disk increases when squeezing parameter Sq enlarges. This illustrates that heat transfer rate at the lower wall can be enhanced by increasing the squeezing velocity of the lower disk. The results demonstrate a decreasing trend in temperature profile for increasing volume fraction of carbon nanotubes. Moreover, improvement in heat transfer rate because of existence of carbon nanotubes is also apparent. A significant enhancement in temperature profile is depicted when inertial permeability coefficient is enhanced. Skin friction coefficients at the lower and upper disks are higher for MWCNTs in comparison to the SWCNTs.

Originality/value

To the best of author’s knowledge, no such consideration has been given in the literature yet.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 28 no. 12
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 1 August 1997

A. Macfarlane, S.E. Robertson and J.A. Mccann

The progress of parallel computing in Information Retrieval (IR) is reviewed. In particular we stress the importance of the motivation in using parallel computing for text…

Abstract

The progress of parallel computing in Information Retrieval (IR) is reviewed. In particular we stress the importance of the motivation in using parallel computing for text retrieval. We analyse parallel IR systems using a classification defined by Rasmussen and describe some parallel IR systems. We give a description of the retrieval models used in parallel information processing. We describe areas of research which we believe are needed.

Details

Journal of Documentation, vol. 53 no. 3
Type: Research Article
ISSN: 0022-0418

Keywords

Article
Publication date: 26 May 2022

Rashmi Agrawal and Pradeep Kaswan

This paper aims to examine the squeezing flow of hybrid nanofluid within the two parallel disks. The 50:50% water–ethylene glycol mixture is used as a base fluid to prepare…

Abstract

Purpose

This paper aims to examine the squeezing flow of hybrid nanofluid within the two parallel disks. The 50:50% water–ethylene glycol mixture is used as a base fluid to prepare Ag–Fe_3O_4 hybrid nanofluid. Entropy generation analysis is examined by using the second law of thermodynamics, and Darcy’s modal involves estimating the behavior of a porous medium. The influences of Viscous dissipation, Joule heating and thermal radiation in modeling are further exerted into concern.

Design/methodology/approach

For converting partial differential systems to ordinary systems, a transformation technique is used. For the validation part, the numerical solution is computed by embracing a fourth-order exactness program (bvp4c) and compared with the analytical solution added by the homotopy analysis method (HAM). Graphical decisions expose the values of miscellaneous-arising parameters on the velocity, temperature and local-Nusselt numbers.

Findings

Hybrid nanofluid gives significant enhancement in the rate of heat transfer compared with nanofluid. The outcomes indicate that the average Nusselt number and entropy generation are increasing functions of the magnetic field, porosity and Brinkman number. When the thermal radiation rises, the average Nusselt number diminishes and the entropy generation advances. Furthermore, combining silver and magnetite nanoparticles into the water–ethylene glycol base fluid significantly enhances entropy generation performance.

Originality/value

Entropy generation analysis of the magneto-hydrodynamics (MHD) fluid squeezed between two parallel disks by considering Joule heating, viscous dissipation and thermal radiation for different nanoparticles is addressed. Furthermore, an appropriate agreement is obtained in comparing the numerical results with previously published and analytical results.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 33 no. 1
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 1 February 1987

Alex Shekhel and Eva Freeman

A parallel‐processor computer contains multiple CPUs that share such system resources as memory and disk storage. A parallel‐processor computer is expanded not by adding another…

Abstract

A parallel‐processor computer contains multiple CPUs that share such system resources as memory and disk storage. A parallel‐processor computer is expanded not by adding another computer, but by plugging another CPU into the computer. This technology offers expandability, compact size, high performance, high reliability, and moderate cost. The Sequent Balance Parallel‐Processor Computer is described in some detail. A fully configured Balance 21000 can execute 21 MIPS (million instructions per second). It implements the UNIX operating system, which has been widely adopted. As a result, many software packages for word processing and other applications are available from third‐party vendors. Performance tests conducted by CLSI, Inc. indicate that twenty concurrent users on a parallel‐processor system can perform CPU‐intense functions up to seven times faster than on a single‐processor system.

Details

Library Hi Tech, vol. 5 no. 2
Type: Research Article
ISSN: 0737-8831

Article
Publication date: 21 November 2018

Dezun Sheng, Tao Ni, Ming Zou and Huichen Zhang

This paper aims to investigate the effect of laser surface texturing on the tribological performance of Ti-6Al-4V disks sliding against Si3N4 balls under hydroxyethyl-cellulose…

Abstract

Purpose

This paper aims to investigate the effect of laser surface texturing on the tribological performance of Ti-6Al-4V disks sliding against Si3N4 balls under hydroxyethyl-cellulose water-based lubrication. The friction coefficients and wear losses of textured and untextured disks were measured and compared. The results indicate that the texture patterns can lead to reduction of friction and wear in the condition of water-based lubrication.

Design/methodology/approach

Solutions of hydroxyethyl cellulose were used as water-based lubricants. To find the optimal laser texturing parameters for the best performance enhancement, three line-like patterns were fabricated onto the disks and three machining parameters were used for each type of pattern. Tribological tests were conducted in rotation sliding with ball-on-disk contact configuration on UMT-2.

Findings

A higher density of texture lines leads to a larger friction and wear reduction. Compared with untextured disks, the friction coefficient is reduced from 0.043 to 0.028 for textured disks. Some unworn parts were detected in the contact region of the balls against textured disks, which were not found on the balls against untextured disks. The worn surfaces indicated that periodic geometry of the contact track was rebuilt during run-in period, which was beneficial for the formation of lubricant films.

Originality/value

In this work, laser surface texturing was used to reduce the friction and wear of Ti-6Al-4V specimens in water-based lubrication, which can be used to improve the tribological performance of Ti-6Al-4V components in mechanical equipment.

Details

Industrial Lubrication and Tribology, vol. 71 no. 3
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 6 July 2018

Vishwanath B. Awati, Oluwole Daniel Makinde and Manjunath Jyoti

The purpose of this paper is to study the laminar boundary layer flow between a stationary nonporous disk and a porous rotating disk, both being immersed in large amount of fluid.

Abstract

Purpose

The purpose of this paper is to study the laminar boundary layer flow between a stationary nonporous disk and a porous rotating disk, both being immersed in large amount of fluid.

Design/methodology/approach

The governing nonlinear momentum equations in cylindrical polar coordinates together with relevant boundary conditions are reduced to a system of coupled nonlinear ordinary differential equations (NODEs) using similarity transformations. The resulting coupled NODEs are solved using computer-extended series solution and homotopy analysis method.

Findings

The analytical solutions are explicitly expressed in terms of recurrence relation for determining the universal coefficients. The nature and location of singularity which restricts the convergence of series is analyzed by using Domb–Sykes plot. Reversion of series is used for the improvement of series. The region of validity of series is extended for much larger values of Reynolds number (R), i.e. R = 6 to 15.

Originality/value

The resulting solutions are compared with earlier works in the literature and are found to be in good agreement.

Details

Engineering Computations, vol. 35 no. 4
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 27 August 2019

A.S. Dogonchi, Muhammad Waqas, S.R. Afshar, Seyyed Masoud Seyyedi, M. Hashemi-Tilehnoee, Ali J. Chamkha and D.D. Ganji

This paper aims to study the impacts of viscous dissipation, thermal radiation and Joule heating on squeezing flow current and the heat transfer mechanism for a…

Abstract

Purpose

This paper aims to study the impacts of viscous dissipation, thermal radiation and Joule heating on squeezing flow current and the heat transfer mechanism for a magnetohydrodynamic (MHD) nanofluid flow in parallel disks during a suction/blowing process.

Design/methodology/approach

First, the governing momentum/energy equations are transformed into a non-dimensional form and then the obtained equations are solved by modified Adomian decomposition method (ADM), known as Duan–Rach approach (DRA).

Findings

The effect of the radiation parameter, suction/blowing parameter, magnetic parameter, squeezing number and nanoparticles concentration on the heat transfer and flow field are investigated in the results. The results show that the fluid velocity increases with increasing suction parameter, while the temperature profile decreases with increasing suction parameter.

Originality/value

A complete analysis of the MHD fluid squeezed between two parallel disks by considering Joule heating, thermal radiation and adding different nanoparticles using the novel method called DRA is addressed.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 30 no. 2
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 1 April 1982

William H. Warden and Bette M. Warden

Microcomputers are rapidly becoming commonplace in libraries today and will become even more so as prices fall and capabilities increase. Microcomputers can provide a wide range…

Abstract

Microcomputers are rapidly becoming commonplace in libraries today and will become even more so as prices fall and capabilities increase. Microcomputers can provide a wide range of services, from being an integral part of a circulation system to serving as a terminal to access online databases and information utilities such as the Source or CompuServe. Software can be purchased or developed to assist in online literature searching (record keeping or standardization of database commands). Database packages, or even word processing programs, can be used to help compile local newspaper indexes or other local information files. Statistical packages can be used to analyze library usage and even the laborious task of writing reports or letters can be greatly aided by word processing programs. Even though the availability of software is a determining factor in choosing a microcomputer, this report will concentrate on meeting the hardware needs of individual libraries.

Details

Reference Services Review, vol. 10 no. 4
Type: Research Article
ISSN: 0090-7324

Article
Publication date: 2 May 2017

Syed Tauseef Mohyud-din, Muhammad Asad Iqbal, Umar Khan and Xiao-Jun Yang

This paper aims to propose a method by merging Legendre wavelets method and quasilinearization technique to tackle with the nonlinearity and to get better and more accurate…

120

Abstract

Purpose

This paper aims to propose a method by merging Legendre wavelets method and quasilinearization technique to tackle with the nonlinearity and to get better and more accurate results.

Design/methodology/approach

To test the significance of the proposed scheme, the authors applied the method on the model representing magneto-hydrodynamic squeezing flow of a viscous fluid between two parallel infinite disks, where one disk is impermeable and the other is porous with either suction or injection of the fluid. For the sake of comparison, numerical solution by using RK-4 is also computed. From the graphs and tables, it is evident that the proposed method shows an excellent accordance with the numerical solution.

Findings

The solution converges to the numerical solution when the degree of Legendre polynomials m is increased. For m = 20 in all the three cases, for different values of S, M and A, the graphs of solutions obtained by Legendre wavelet quasilinearization technique show an excellent agreement with numerical solution. Also, it is evident from figures that suction and injection affects the velocity profile in opposite way. For suction, maximum velocity is seen to be at the center of the channel. Magnetic field can be used to regularize the flow and it stabilizes the flow behavior.

Originality/value

Magnetic field can be used to regularize the flow and it stabilizes the flow behavior.

Details

Engineering Computations, vol. 34 no. 3
Type: Research Article
ISSN: 0264-4401

Keywords

1 – 10 of over 3000