Search results

1 – 10 of over 1000
Article
Publication date: 6 March 2017

Massimo Fabbri and Antonio Morandi

This study aims to investigate the feasibility of saturated AC heating of magnetic metals. In AC heating of magnetic steel below the Curie temperature, because of the high…

Abstract

Purpose

This study aims to investigate the feasibility of saturated AC heating of magnetic metals. In AC heating of magnetic steel below the Curie temperature, because of the high magnetic permeability, the penetration depth is in the order of 1-6 mm at 50 Hz. Surface heating is then obtained, in practice, if large slabs are processed. The necessity to provide the required surface-to-core temperature uniformity (about 25°C) at the end of the heating process, avoiding excessive thermal stresses which can lead to cracks, thus implies a long heating time.

Design/methodology/approach

The penetration depth can be increased if the material is brought to saturation by applying an external DC magnetic field, and a faster in-depth heating can be obtained. The DC saturating field can be produced with no losses over large volumes by means of superconducting (SC) coils.

Findings

The feasibility of in-depth induction heating of a 200 × 1,000 × 5,000 mm magnetic steel slab with an applied 2 T DC saturating field is numerically investigated. The results show that the use of a DC saturating field leads to shorter processes which fulfil the heating objectives.

Practical implications

A DC saturating field cannot be produced by means of copper coils because of the large amount of material and the unaffordable power required. However, this field can effectively be produced by means of SC magnets based on state-of-the-art materials.

Originality/value

Superconductivity may be the enabling technology for fast and efficient induction heating of magnetic steel slabs if the increase in productivity can balance the additional costs due to the SC magnet.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering, vol. 36 no. 2
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 6 November 2017

Lei Li and Lin Li

This paper aims to present a novel energy-efficient saturated open-core fault current limiter (FCL) with special permanent magnet (PM) modules.

Abstract

Purpose

This paper aims to present a novel energy-efficient saturated open-core fault current limiter (FCL) with special permanent magnet (PM) modules.

Design/methodology/approach

The special PM modules are used to drive the cores of FCL into a saturated state from different directions in the normal operation condition, reducing the DC current of the saturated open-core FCL. An equivalent magnetic circuit model of the saturated open-core FCL with PM modules is built to calculate the magnetic flux density in the cores of FCL. By applying the modified nodal approach on the circuit, the nonlinear equations of the magnetic circuit can be achieved. The Newton – Raphson method is used to solve the nonlinear equations. The model shows good accuracy verified by finite element simulation and a physical experiment.

Findings

Compared with the original saturated open-core FCL structure with PMs, the novel saturated open-core FCL structure can save 84% DC power. The physical experiment results show that the saturated open-core FCL has a good performance on limiting the fault current.

Originality/value

A novel saturated open-core FCL structure with PM modules is proposed in this paper. A physical model of the saturated open-core FCL structure with PM modules is manufactured and tested. About 84% DC power can be reduced by using the PM modules in this saturated open-core FCL, and it can save most of the cost of the saturated open-core FCL.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering, vol. 36 no. 6
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 2 March 2012

Xiaojun Zhao, Lin Li, Junwei Lu, Zhiguang Cheng and Tiebing Lu

This paper aims to introduce the decomposed harmonic balance finite element method (HBFEM) to decrease the memory requirement in large‐scale computation of the DC‐biasing magnetic…

Abstract

Purpose

This paper aims to introduce the decomposed harmonic balance finite element method (HBFEM) to decrease the memory requirement in large‐scale computation of the DC‐biasing magnetic field. Harmonic analysis of the flux density and flux distribution was carried out to investigate the DC biased problem in a laminated core model (LCM).

Design/methodology/approach

Based on the DC bias test on a LCM, the decomposed HBFEM is applied to accurately calculate the DC‐biasing magnetic field. External electric circuits are coupled with the magnetic field in the harmonic domain. The reluctivity matrix is decomposed and the block Gauss‐Seidel algorithm solves each harmonic solution of magnetic field and exciting current sequentially.

Findings

The calculated exciting currents and flux density are compared with that obtained from measurement and time domain finite element analysis, respectively, which demonstrates consistency. The DC bias leads to the significant saturation of the magnetic core and serious distortion of the exciting current. The flux density varies nonlinearly with DC bias excitation.

Research limitations/implications

The harmonic balance method is only applicable in solving the steady state magnetic field. Future improvements in the method are necessary in order to manage the hysteresis effects in magnetic material.

Originality/value

The proposed method to solve the DC biased problem significantly reduces the memory requirement compared to the conventional HBFEM. The decomposed harmonic balance equations are solved efficiently by the block Gauss‐Seidel algorithm combined with the relaxation iterative scheme. An investigation on DC bias phenomena is carried out through the harmonic solution of the magnetic field. The decomposed HBFEM can also be applied to solve 3‐D DC‐biasing magnetic field and eddy current nonlinear problems in a practical power transformer.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering, vol. 31 no. 2
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 1 June 2000

K. Wiak

Discusses the 27 papers in ISEF 1999 Proceedings on the subject of electromagnetisms. States the groups of papers cover such subjects within the discipline as: induction machines;…

Abstract

Discusses the 27 papers in ISEF 1999 Proceedings on the subject of electromagnetisms. States the groups of papers cover such subjects within the discipline as: induction machines; reluctance motors; PM motors; transformers and reactors; and special problems and applications. Debates all of these in great detail and itemizes each with greater in‐depth discussion of the various technical applications and areas. Concludes that the recommendations made should be adhered to.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering, vol. 19 no. 2
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 1 January 2014

Zhigao Wang, Shuhong Wang, Jie Qiu, Weizhi Gong and Jingyin Zhang

Saturated core type superconducting fault current limiter (SFCL) can effectively limit the short-circuit current in power system. However, the high induced voltage will occur…

Abstract

Purpose

Saturated core type superconducting fault current limiter (SFCL) can effectively limit the short-circuit current in power system. However, the high induced voltage will occur between the terminals of DC superconducting bias winding caused by the variation of magnetic flux linked by DC winding due to the increasing short-circuit current. The DC source may be damaged. Thus, the induced voltage should be considered in DC winding design. The paper aims to discuss these issues.

Design/methodology/approach

Three-dimensional finite element method coupled with electric circuit.

Findings

The short-circuit current flowing through AC windings and induced voltage of DC winding are analyzed by using three-dimensional finite element method coupled with electric circuit for a 220-kV three-phase SFCL. Several circuit elements, such as a capacitor connected with DC winding in parallel, an additional short-circuit winding wound around DC core column and an energy-released piezoresistor, are, respectively, used for induced voltage reduction. These methods aim to save magnetic coupled energy in DC winding, or oppose the variation of magnetic flux, or limit the voltage of DC winding by using a resistor with low resistance.

Originality/value

The different methods for reduction of induced voltage of superconducting DC winding are studied and discussed. The decreased induced voltage may benefit the safety of superconducting DC winding and the source.

Details

COMPEL: The International Journal for Computation and Mathematics in Electrical and Electronic Engineering, vol. 33 no. 1/2
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 13 November 2009

Zbigniew Gmyrek

The purpose of this paper is to discuss a new method of iron loss estimation under pulse width modulation (PWM) converter supply. The proposed method concerns the longitudinal…

Abstract

Purpose

The purpose of this paper is to discuss a new method of iron loss estimation under pulse width modulation (PWM) converter supply. The proposed method concerns the longitudinal magnetisation.

Design/methodology/approach

A novel method of iron loss estimation applies values of iron losses that come from a single higher harmonic coexisting with a DC‐bias field. This method considers non‐linearity of ferromagnetic. Results of estimation are validated using experimental results.

Findings

The paper formulates that the dependence of iron losses come from harmonics, on DC‐bias field. Moreover, it formulates possibilities of their utilization to iron loss estimation in case of deformed flux. On the other hand, it discusses the influence of DC‐bias field on static hysteresis and classical eddy current losses.

Research limitations/implications

Experimental verification will still be needed as to the accuracy of the proposed model and applicability to various magnetic materials.

Practical implications

The paper provides an easy mathematical method of iron loss estimation, under PWM voltage supply.

Originality/value

The paper explains how to use an analytical method and results of iron losses come from single harmonics, obtained under coexistence with DC‐bias field, to iron loss estimation in case of longitudinal magnetisation where deformed magnetic flux occurs.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering, vol. 28 no. 6
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 3 January 2017

Debraj Sarkar, Debabrata Roy, Amalendu Bikash Choudhury and Sotoshi Yamada

A saturated iron core superconducting fault current limiter (SISFCL) has an important role to play in the present-day power system, providing effective protection against…

Abstract

Purpose

A saturated iron core superconducting fault current limiter (SISFCL) has an important role to play in the present-day power system, providing effective protection against electrical faults and thus ensuring an uninterrupted supply of electricity to the consumers. Previous mathematical models developed to describe the SISFCL use a simple flux density-magnetic field intensity curve representing the ferromagnetic core. As the magnetic state of the core affects the efficient working of the device, this paper aims to present a novel approach in the mathematical modeling of the device with the inclusion of hysteresis.

Design/methodology/approach

The Jiles–Atherton’s hysteresis model is utilized to develop the mathematical model of the limiter. The model is numerically solved using MATLAB. To support the validity of model, finite element model (FEM) with similar specifications was simulated.

Findings

Response of the limiter based on the developed mathematical model is in close agreement with the FEM simulations. To illustrate the effect of the hysteresis, the responses are compared by using three different hysteresis characteristics. Harmonic analysis is performed and comparison is carried out utilizing fast Fourier transform and continuous wavelet transform. It is observed that the core with narrower hysteresis characteristic not only produces a better current suppression but also creates a higher voltage drop across the DC source. It also injects more harmonics in the system under fault condition.

Originality/value

Inclusion of hysteresis in the mathematical model presents a more realistic approach in the transient analysis of the device. The paper provides an essential insight into the effect of the core hysteresis characteristic on the device performance.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering, vol. 36 no. 1
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 27 September 2011

Oleg Rybin, Konstantin Yemelyanov, Amjad Pitafi and Tahira Nawaz

The purpose of this paper is to study the microwave behaviour of effective magnetic permeability for two‐component ferrite like metamaterial medium in the direction of a biasing…

Abstract

Purpose

The purpose of this paper is to study the microwave behaviour of effective magnetic permeability for two‐component ferrite like metamaterial medium in the direction of a biasing magnetic field. The metamaterial medium is presented as an infinite host dielectric material (air) with periodically embedded ferric cylindrical and spherical inclusions saturated with an external dc magnetic field. The study is based on the effective medium theory developed for polycrystalline metaferrites. The simulations show that the presented metamaterial can exhibit the ultra‐low refractive index (ULI) phenomenon and the phenomenon of negative magnetic permeability for the case of microwave propagation in the direction of bias.

Design/methodology/approach

The obtained results are based on the wave long approximation of permeability tensor of the presented metamaterial media obtained earlier by the first author. Using the standard approach, the authors apply the above expressions for the microwave propagation in direction of biasing dc magnetic field considering different polarization of the incident microwave.

Findings

The considered artificial material media can become either material with a ULI or with negative values in the GHz frequencies.

Originality/value

The paper is concerned with part of the theory of a new generation of artificial ferrites.

Details

Multidiscipline Modeling in Materials and Structures, vol. 7 no. 3
Type: Research Article
ISSN: 1573-6105

Keywords

Article
Publication date: 19 July 2022

Amar Tiourguiouine, Cristian Demian, Raphael Romary, Mehdi Zmirli and Philippe Bernard

This paper aims to present the principle of virtual air gap inductance and the design of a voltage regulation device based on this principle. The authors provide a comprehensive…

Abstract

Purpose

This paper aims to present the principle of virtual air gap inductance and the design of a voltage regulation device based on this principle. The authors provide a comprehensive analysis of this specific application that consists of locally saturating the magnetic circuit of the voltage regulator to modify its global properties. This saturation is created by a direct current flowing in a small auxiliary coil inserted in the specific area of the magnetic circuit to saturate this zone.

Design/methodology/approach

Analytical calculation and finite elements simulations are used to optimize the device for a specific application tied to the supply of electrical ovens in metallurgic usage. Experimental results are presented at the end of the paper.

Findings

The experimental results presented in this paper are in concordance with the analytical calculation and with the finite element simulations for different operation points. The difficulty of the study of the virtual air gap comes mainly from the nonlinearity of the phenomena because the principle is based on a local and controllable saturation of the magnetic circuit.

Originality/value

The originality of the paper concerns the introduction of virtual air gap principle in a specific industrial application.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering , vol. 41 no. 4
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 8 May 2018

Hilary Kudzai Chisepo, Leslie David Borrill and Charles Trevor Gaunt

This paper aims to improve the finite element modelling of transformers subjected to DC excitation, by including core joint details.

Abstract

Purpose

This paper aims to improve the finite element modelling of transformers subjected to DC excitation, by including core joint details.

Design/methodology/approach

Geomagnetically induced currents (GICs) or leakage DC can cause part-cycle, half wave saturation of a power transformer’s core. Practical measurements and finite element matrix (FEM) simulation were carried out using three laboratory-scale, untanked single-phase four limb transformers resembling real power transformers in terms of the core steel and parallel winding assemblies. “Equivalent air gaps” at the joints, based on AC measurements, were applied to the FEM models for simultaneous AC and DC excitation.

Findings

Measurements confirm that introducing equivalent air gaps at the joints improves the FEM simulation of transformers carrying DC.

Research limitations/implications

The FEM simulations based on the laboratory transformers are exemplary, showing the difference between modelling core joints as solid or including equivalent air gaps. They show that, for more representative results, laboratory transformers used for research should have mitred core joints (like power transformers).

Originality/value

This research shows why joint details are important in FEM models for analysing transformer core saturation in the presence of DC/GICs. Extending this, other core structures of power transformers with mitred joints should improve the understanding of the leakage flux during half-wave saturation.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering, vol. 37 no. 3
Type: Research Article
ISSN: 0332-1649

Keywords

1 – 10 of over 1000