Search results

1 – 10 of 145
Article
Publication date: 6 March 2017

Massimo Fabbri and Antonio Morandi

This study aims to investigate the feasibility of saturated AC heating of magnetic metals. In AC heating of magnetic steel below the Curie temperature, because of the high magnetic

Abstract

Purpose

This study aims to investigate the feasibility of saturated AC heating of magnetic metals. In AC heating of magnetic steel below the Curie temperature, because of the high magnetic permeability, the penetration depth is in the order of 1-6 mm at 50 Hz. Surface heating is then obtained, in practice, if large slabs are processed. The necessity to provide the required surface-to-core temperature uniformity (about 25°C) at the end of the heating process, avoiding excessive thermal stresses which can lead to cracks, thus implies a long heating time.

Design/methodology/approach

The penetration depth can be increased if the material is brought to saturation by applying an external DC magnetic field, and a faster in-depth heating can be obtained. The DC saturating field can be produced with no losses over large volumes by means of superconducting (SC) coils.

Findings

The feasibility of in-depth induction heating of a 200 × 1,000 × 5,000 mm magnetic steel slab with an applied 2 T DC saturating field is numerically investigated. The results show that the use of a DC saturating field leads to shorter processes which fulfil the heating objectives.

Practical implications

A DC saturating field cannot be produced by means of copper coils because of the large amount of material and the unaffordable power required. However, this field can effectively be produced by means of SC magnets based on state-of-the-art materials.

Originality/value

Superconductivity may be the enabling technology for fast and efficient induction heating of magnetic steel slabs if the increase in productivity can balance the additional costs due to the SC magnet.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering, vol. 36 no. 2
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 10 August 2023

Rajneesh Kumar and Pradeep Kumar Jha

The purpose of this study is to explore how a time-varying electromagnetic stirring (EMS) affects the fluid flow and solidification behavior in a slab caster continuous casting…

Abstract

Purpose

The purpose of this study is to explore how a time-varying electromagnetic stirring (EMS) affects the fluid flow and solidification behavior in a slab caster continuous casting mold. Further, the study of inclusion movements in the mold is carried out under the effect of a time-varying electromagnetic field.

Design/methodology/approach

A three-dimensional coupled numerical model of solidification and magnetohydrodynamics has been developed for slab caster mold to investigate the inclusions transport by discrete phase model with the use of user-defined functions. Enthalpy porosity and the Lagrangian approach are applied to analyze the behavior of solidification and inclusion.

Findings

The study shows that the magnetic field density distribution has a radial symmetry in relation to the stirrer’s center. As the EMS current intensity increases, the strength of the lower recirculation zone gradually decreases and nearly disappears at higher intensities. Additionally, the area of localized remelting zone expands in the solidification front with rising current intensity. The morphology of inclusions and EMS current intensity have a significant impact on the behavior and movement of inclusions within the molten steel.

Practical implications

By using the model, one can optimize the EMS parameter to enhance the quality of steel casting through the elimination of impurities and by improving the microstructure of cast that mainly depend on solidification and flow patterns of molten steel.

Originality/value

Until now, the use of time-varying EMS in the slab caster mold to study solidification and inclusion behavior has not been explored.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 33 no. 11
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 6 March 2017

Zhuang Li, Engang Wang, Yu Xu and Lin Xu

To effectively control the molten steel flow and the stability of free surface in continuous casting mould, this paper aims to propose a new type electromagnetic brake technique…

Abstract

Purpose

To effectively control the molten steel flow and the stability of free surface in continuous casting mould, this paper aims to propose a new type electromagnetic brake technique, namely, vertical electromagnetic brake (V-EMBr). Its brake effect under special processing parameters such as submerged entry nozzle (SEN) depth and port angle is evaluated by the numerical simulation methods.

Design/methodology/approach

A couple three-dimensional mathematical model of fluid flow and static magnetic field was developed to investigate the behaviour of molten steel flow and steel/slag interface in the continuous casting mould, and a volume of fluid model is used to track the interfacial behaviour of molten steel and liquid slag by solving the continuity equation of the phase volume fraction.

Findings

The simulation results showed that the application of V-EMBr can significantly reduce the flow intensity in upper recirculation zone and decrease the meniscus height and the flow velocity of molten steel in the vicinity of narrow side of mould, which is beneficial to reduce the possibility of mould flux entrapment. Especially, the brake effect of V-EMBr has a little affected by the SEN depth and port angle, which is helpful for V-EMBr to better adapt the actual continuous casting process.

Originality/value

Compared to the conventional-level EMBr, the new proposed V-EMBr has the advantage to effectively control the molten steel flow and steel/slag interfacial fluctuation in the vicinity of narrow side of mould with a pair of magnetic fields, and its brake effect is less affected by the changes in continuous casting processing parameters.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering, vol. 36 no. 2
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 6 March 2017

Kevin McMeekin, Frédéric Sirois, Maxime Tousignant and Philippe Bocher

Surface heat treatment by induction heating (10-100 kHz) requires precise prediction and control of the depth of the induced phase transformation. This paper aims at identifying…

Abstract

Purpose

Surface heat treatment by induction heating (10-100 kHz) requires precise prediction and control of the depth of the induced phase transformation. This paper aims at identifying common issues with the measurement and modeling of magnetic properties used in induction heating simulations, and it proposes ways to improve the situation.

Design/methodology/approach

In particular, it is demonstrated how intrinsic magnetic properties (i.e. the B-H curve) of a sample can change during the magnetic characterization process itself, due to involuntary annealing of the sample. Then, for a B-H curve that is supposed perfectly known, a comparison is performed between multiple models, each one representing the magnetic properties of steel in time-harmonic (TH) finite element method simulations. Finally, a new model called “power-equivalent model” is proposed. This model provides the best possible accuracy for a known nonlinear and hysteretic B-H curve used in TH simulations.

Findings

By carefully following the guidelines identified in this paper, reduction of errors in the range of 5-10 per cent can be achieved, both at the experimental and modeling levels. The new “power-equivalent model” proposed is also expected to be more generic than existing models.

Originality/value

This paper highlights common pitfalls in the measurement and modeling of magnetic properties, and suggests ways to improve the situation.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering, vol. 36 no. 2
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 24 April 2023

Wenchao Duan, Yiqiang Yang, Wenhong Liu, Zhiqiang Zhang and Jianzhong Cui

The purpose of this paper is to reveal the solute segregation behavior in the molten and solidified regions during direct chill (DC) casting of a large-size magnesium alloy slab

204

Abstract

Purpose

The purpose of this paper is to reveal the solute segregation behavior in the molten and solidified regions during direct chill (DC) casting of a large-size magnesium alloy slab under no magnetic field (NMF), harmonic magnetic field (HMF), pulsed magnetic field (PMF) and two types of out-of-phase pulsed magnetic field (OPMF).

Design/methodology/approach

A 3-D multiphysical coupling mathematical model is used to evaluate the corresponding physical fields. The coupling issue is addressed using the method of separating step and result inheritance.

Findings

The results suggest that the solute deficiency tends to occur in the central part, while the solute-enriched area appears near the fillet in the molten and solidified regions. Applying magnetic field could greatly homogenize the solute field in the two-phase region. The variance of relative segregation level in the solidified cross-section under NMF is 38.1%, while it is 21.9%, 18.6%, 16.4% and 12.4% under OPMF2 (the current phase in the upper coil is ahead of the lower coil), HMF, PMF and OPMF1 (the current phase in the upper coil lags behind the lower coil), respectively, indicating that OPMF1 is more effective to reduce the macrosegregation level.

Originality/value

There are few reports on the solute segregation degree in rectangle slab under magnetic field, especially for magnesium alloy slab. This paper can act a reference to make clear the solute transport behavior and help reduce the macrosegregation level during DC casting.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 33 no. 7
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 1 June 2000

A. Savini

Gives introductory remarks about chapter 1 of this group of 31 papers, from ISEF 1999 Proceedings, in the methodologies for field analysis, in the electromagnetic community…

1129

Abstract

Gives introductory remarks about chapter 1 of this group of 31 papers, from ISEF 1999 Proceedings, in the methodologies for field analysis, in the electromagnetic community. Observes that computer package implementation theory contributes to clarification. Discusses the areas covered by some of the papers ‐ such as artificial intelligence using fuzzy logic. Includes applications such as permanent magnets and looks at eddy current problems. States the finite element method is currently the most popular method used for field computation. Closes by pointing out the amalgam of topics.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering, vol. 19 no. 2
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 1 May 2002

R.V. Balendran, T.M. Rana, T. Maqsood and W.C. Tang

This paper presents an overview and discusses the applications of fibre reinforced polymer (FRP) bars as reinforcement in civil engineering structures. Following a discussion of…

3777

Abstract

This paper presents an overview and discusses the applications of fibre reinforced polymer (FRP) bars as reinforcement in civil engineering structures. Following a discussion of the science underpinning their use, selected case studies where FRP reinforcement has been used are presented. The use of FRP reinforcement is rapidly gaining pace and may replace the traditional steel due to its enhanced properties and cost‐effectiveness. In addition, FRP reinforcement offers an effective solution to the problem of steel durability in aggressive environments and where the magnetic or electrical properties of steel are undesirable.

Details

Structural Survey, vol. 20 no. 2
Type: Research Article
ISSN: 0263-080X

Keywords

Article
Publication date: 1 August 1998

Jaroslav Mackerle

This paper gives a review of the finite element techniques (FE) applied in the area of material processing. The latest trends in metal forming, non‐metal forming, powder…

4529

Abstract

This paper gives a review of the finite element techniques (FE) applied in the area of material processing. The latest trends in metal forming, non‐metal forming, powder metallurgy and composite material processing are briefly discussed. The range of applications of finite elements on these subjects is extremely wide and cannot be presented in a single paper; therefore the aim of the paper is to give FE researchers/users only an encyclopaedic view of the different possibilities that exist today in the various fields mentioned above. An appendix included at the end of the paper presents a bibliography on finite element applications in material processing for 1994‐1996, where 1,370 references are listed. This bibliography is an updating of the paper written by Brannberg and Mackerle which has been published in Engineering Computations, Vol. 11 No. 5, 1994, pp. 413‐55.

Details

Engineering Computations, vol. 15 no. 5
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 1 March 2003

Valentin Nemkov and Robert Goldstein

This presentation is a continuation of the presentation made at IHS 98. The topics remain the same; however, the content is updated to reflect the improvements in both computer…

Abstract

This presentation is a continuation of the presentation made at IHS 98. The topics remain the same; however, the content is updated to reflect the improvements in both computer software and hardware and some new studies made by Centre for Induction Technology, Inc. (CIT). Several examples are presented that show the results of computer simulation studies and their verification by means of empirical studies. These examples include 1‐D, 2‐D and 3‐D computer simulation of various induction heating systems. Special attention is paid to 3‐D electromagnetic simulation, including a fundamental study of the end and edge effects for induction heating of slabs and the historical perspective of this case.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering, vol. 22 no. 1
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 28 September 2018

Ambrish Maurya and Pradeep Kumar Jha

This investigation aims to analyze the steel-flux interface level fluctuation because of electromagnetic stirring and its process parameters in a continuous casting billet mold.

Abstract

Purpose

This investigation aims to analyze the steel-flux interface level fluctuation because of electromagnetic stirring and its process parameters in a continuous casting billet mold.

Design/methodology/approach

An un-coupled numerical model for electromagnetic field generation and a coupled numerical model of electromagnetic field and two-phase fluid flow have been developed. The two-phase fluid flow has been modeled using volume of fluid method, in which externally generated time-varying electromagnetic field is coupled and analyzed using magnetohydrodynamic method. Top surface standing wave stability criteria are used to study the criticality of interface stability.

Findings

Results show that application electromagnetic field for stirring increases the interface level fluctuation, specifically at the mold corners and near the submerged entry nozzle. The increase in current intensity and stirrer width barely affect the interface level. However, interface level fluctuation increases considerably with increase in frequency. Using stability criteria, it is found that at 20 Hz frequency, the ratio of height to wavelength of interface wave increases much above the critical value. The iso-surface of the interface level shows that at 20 Hz frequency, mold flux gets entrapped into the liquid steel.

Practical implications

The model may be used during optimization of in-mold electromagnetic stirrer to avoid mold flux entrapment and control the cast quality.

Originality/value

The study of mold level fluctuation in the presence of in-mold electromagnetic stirrer has rarely been reported. The criticality of stirrer process parameters on level fluctuation has not been yet reported. This study lacks in experimental validation; however, the findings will be much useful for the steelmakers to reduce the casting defects.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 28 no. 9
Type: Research Article
ISSN: 0961-5539

Keywords

1 – 10 of 145