Search results

1 – 10 of 47
Article
Publication date: 3 October 2016

Hassan Samami and S. Olutunde Oyadiji

The purpose of this paper is to employ analytical and numerical techniques to generate modal displacement data of damaged beams containing very small crack-like surface flaws or…

Abstract

Purpose

The purpose of this paper is to employ analytical and numerical techniques to generate modal displacement data of damaged beams containing very small crack-like surface flaws or slots and to use the data in the development of damage detection methodology. The detection method involves the use of double differentiation of the modal data for identification of the flaw location and magnitude.

Design/methodology/approach

The modal displacements of damaged beams are simulated analytically using the Bernoulli-Euler theory and numerically using the finite element method. The principle used in the analytical approach is based on changes in the transverse displacement due to the localized reduction of the flexural rigidity of the beam. Curvature analysis is employed to identify and locate the structural flaws from the modal data. The curvature mode shapes are calculated using a central difference approximation. The effects of random noise on the detectability of the structural flaws are also computed.

Findings

The analytical approach is much more robust in simulating modal displacement data for beams with crack-like surface flaws or slots than the finite element analysis (FEA) approach especially for crack-like surface flaws or slots of very small depths. The structural flaws are detectable in the presence of random noise of up to 5 per cent.

Originality/value

Simulating the effects of small crack-like surface flaws is important because it is essential to develop techniques to detect cracks at an early stage of their development. The FEA approach can only simulate the effects of crack-like surface flaws or slots with depth ratio greater than 10 per cent. On the other hand, the analytical approach using the Bernoulli-Euler theory can simulate the effects of crack-like surface flaws or slots with depth ratio as small as 2 per cent.

Article
Publication date: 2 April 2019

Abdulhakim Adeoye Shittu, Fuat Kara, Ahmed Aliyu and Obinna Unaeze

The purpose of this paper is to mainly review the state-of-the-art developments in the field of hydrodynamics of offshore pipelines, identifying the key tools for analysis of

Abstract

Purpose

The purpose of this paper is to mainly review the state-of-the-art developments in the field of hydrodynamics of offshore pipelines, identifying the key tools for analysis of pipeline free spans, their applications, their qualifying characteristics and capabilities and limitations.

Design/methodology/approach

These different analytical, numerical and semi-empirical tools available for predicting such hydrodynamic loads and their effects include VIVANA, PIPESIN, VIVSIM, SIMULATOR, FATFREE, amongst others. Inherent in these models are current effects, wave effects and/ or pipe–soil interactions.

Findings

Amongst these models, the most attention was given to the new VIVANA model because this model take into account the vortex-induced effects with respect to free-spanning pipelines (which have dominant effect in the span analysis in deep water) better than other semi-empirical models (such as Shear 7). Recent improvements in VIVANA include its ability to have arbitrary variation in speed and direction of current, as well as the ability for calculation of pure IL and combined IL-CF response. Improvements in fatigue assessments at free spans, i.e. pipe–soil interaction have been achieved through the combined frequency domain and non-linear time domain analysis methodology adopted. Semi-empirical models are still the de facto currently used in the design of free-spanning pipelines. However, there is need for further research on free-span hydrodynamic coefficients and on how in-line and cross-flow vibrations interact. Again, there is still the challenge due to VIV complexity in fully understanding the fluid structure interaction problem, as there is no consolidated procedure for its analysis. It has been observed that there is large scatter between the different codes adopted in the prediction of fatigue damage, as there lacks full-scale test data devoted to determination/validation of the coefficients used in the semi-empirical models. A case study of the preliminary design of a typical 48 in. pipeline has been presented in this study to demonstrate the use of the free-span analysis tool, DNV RP F105. Excel spreadsheet has been applied in the execution of formulas.

Originality/value

This review paper is the first of its kind to study the state-of-the-art development in pipeline free-span analysis models and demonstrate the use of analysis tool, DNV for MAFSL calculation. Hence, information obtained from this paper would be invaluable in assisting designers both in the industry and academia.

Details

World Journal of Engineering, vol. 16 no. 1
Type: Research Article
ISSN: 1708-5284

Keywords

Article
Publication date: 27 June 2008

Y‐J. Lin and Suresh V. Venna

The purpose of this paper is to propose an effective and novel methodology to determine optimal location of piezoelectric transducers for passive vibration control of

Abstract

Purpose

The purpose of this paper is to propose an effective and novel methodology to determine optimal location of piezoelectric transducers for passive vibration control of geometrically complicated structures and shells with various curvatures. An industry‐standard aircraft leading‐edge structure is considered for the actuator placement analysis and experimental verification.

Design/methodology/approach

The proposed method is based on finite element analysis of the underlying structure having a thin layer of piezoelectric elements covering the entire inner surface with pertinent boundary conditions. All the piezoelectric properties are incorporated into the elements. Specifically, modal piezoelectric analysis is performed to provide computed tomography for the evaluations of the electric potential distributions on these piezoelectric elements attributed by the first bending and torsional modes of structural vibration. Then, the outstanding zone(s) yielding highest amount of electric potentials can be identified as the target location for the best actuator placement.

Findings

Six piezoelectric vibration absorbers are determined to be placed alongside both of the fixed edges. An experimental verification of the aluminum leading edge's vibration suppression using the proposed method is conducted exploiting two resistive shunt circuits for the passive damping. A good agreement is obtained between the analytical and experimental results. In particular, vibration suppression around 30 and 25 per cent and Q‐factor reduction up to 15 and 10 per cent are obtained in the designated bending and torsional modes, respectively. In addition, some amount of damping improvement is observed at higher modes of vibration as well.

Research limitations/implications

The frequency in the proposed approach will be increased slowly and gradually from 0 to 500 Hz. When the frequency matches the natural frequency of the structure, owing to the resonant condition the plate will vibrate heavily. The vibrations of the plate can be observed by connecting a sensor to an oscilloscope. Owing to the use of only one sensor, not all the modes can be detected. Only the first few modes can be picked up by the sensor, because of its location.

Practical implications

This method can also be used in optimizing not only the location but also the size and shape of the passive vibration absorber to attain maximum amount of damping. This can be achieved by simply changing the dimensions and shape of the piezoelectric vibration absorber in the finite element model on an iterative basis to find the configuration that gives maximum electric potential.

Originality/value

The determination of optimal location(s) for piezoelectric transducers is very complicated and difficult if the geometry of structures is curved or irregular. Therefore, it has never been reported in the literature. Here an efficient FEA‐based electric potential tomography method is proposed to identify the optimized locations for the PZT transducers for passive vibration control of geometrically complicated structures, with minimal efforts. In addition, this method will facilitate the determination of electric potentials that would be obtained at all the possible locations for piezoelectric transducers and hence makes it possible to optimize the placement and configurations of the candidate transducers on complex shape structures.

Details

Sensor Review, vol. 28 no. 3
Type: Research Article
ISSN: 0260-2288

Keywords

Article
Publication date: 14 October 2021

Nikolaos Papanikolaou and Konstantinos Anyfantis

Experimental mid/large scale testing of ship-like stiffened panels in compression is a quite expensive exercise that is not standard. Numerical simulations are preferred instead…

Abstract

Purpose

Experimental mid/large scale testing of ship-like stiffened panels in compression is a quite expensive exercise that is not standard. Numerical simulations are preferred instead. Because of being relatively inexpensive (cost and time wise), most authors perform an exhaustive design space exploration arriving at a significant number of runs. This work demonstrates that the buckling response with respect to the nondimensional slenderness ratios may well be fitted with nine runs per stiffener geometry.

Design/methodology/approach

Efficient derivation of buckling strength formulas for stiffened panels through the employment of design of experiments (DoE) and response surface methodology (RSM) combined with numerical nonlinear experimentation over the entire range of practical geometries.

Findings

The surrogate model developed for T-bar stiffeners predicts accurately enough the ultimate stress in the practical design area, while the surrogate models for angle bars and flat bars demonstrate difference between 10 and 30% from common structural rules (CSR).

Originality/value

To the authors' best knowledge, the statistical-based formal and rigorous approach of DoE and RSM to obtaining buckling surfaces for stiffened panels is performed for the first time. The number of required observations per stiffener type has not been addressed yet as each work selects its own sampling scheme without formal reasoning. This work comes to frame the number of observations for efficient surrogate model building.

Details

Engineering Computations, vol. 39 no. 4
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 1 June 1997

Jaroslav Mackerle

Gives a bibliographical review of the finite element methods (FEMs) applied for the linear and nonlinear, static and dynamic analyses of basic structural elements from the…

6067

Abstract

Gives a bibliographical review of the finite element methods (FEMs) applied for the linear and nonlinear, static and dynamic analyses of basic structural elements from the theoretical as well as practical points of view. The range of applications of FEMs in this area is wide and cannot be presented in a single paper; therefore aims to give the reader an encyclopaedic view on the subject. The bibliography at the end of the paper contains 2,025 references to papers, conference proceedings and theses/dissertations dealing with the analysis of beams, columns, rods, bars, cables, discs, blades, shafts, membranes, plates and shells that were published in 1992‐1995.

Details

Engineering Computations, vol. 14 no. 4
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 5 December 2016

Zhongwei Li and Xiaochuan Yu

A new beam-column ultimate strength calculation method has been developed and compared with nonlinear finite element analysis by ANSYS and ABAQUS.

Abstract

Purpose

A new beam-column ultimate strength calculation method has been developed and compared with nonlinear finite element analysis by ANSYS and ABAQUS.

Design/methodology/approach

A computer code ULTBEAM2 based on this method has been used for one and three span beam-columns with I-shaped cross-section under axial compression.

Findings

This paper studies the ultimate strength of beam-columns with various initial deflections of different shapes and magnitudes.

Originality/value

The comparison of ULTBEAM2 and finite element analysis shows good agreement for all cases with different initial deflections.

Details

World Journal of Engineering, vol. 13 no. 6
Type: Research Article
ISSN: 1708-5284

Keywords

Article
Publication date: 22 December 2022

Amir Najibi, Morteza Kianifar and Payman Ghazifard

The authors examined the numerical natural frequency analysis of a 2D functionally graded (FG) truncated thick hollow cone using 3D elasticity theory.

Abstract

Purpose

The authors examined the numerical natural frequency analysis of a 2D functionally graded (FG) truncated thick hollow cone using 3D elasticity theory.

Design/methodology/approach

The material properties of the 2D-FGM (two dimensional-functionally graded materials) cone are graded along the radial and axial axes of the cone using a power–law distribution. The eigenvalue problem was solved using finite element analysis (FEA) employing graded hexahedral elements, and the verification of the finite element approach was assessed by comparing the current solution to earlier experimental studies.

Findings

The effects of semivertex angle, material distribution and the cone configuration on the natural frequencies have been analyzed. For various semivertex angles, thickness, length and power law exponents, many results in the form of natural frequencies and mode shapes are presented for the 2D-FGM cone. As a result, the effects of the given parameters were addressed, and the results were compared, demonstrating the direct efficiency of raising the power–law exponents and cone thickness on the rise of natural frequencies.

Originality/value

For the first time, the numerical natural frequency analysis of a 2D-FG truncated thick hollow truncated cone based on 3D equations of elasticity has been investigated. The material properties of the truncated cone have been distributed along two directions, which has not been considered before in any research for the truncated thick cone. The reason for using these innovative volume fraction functions is the lack of accurate coverage by functions that are available in the literature (Asemi et al., 2011; Babaei et al. 2021).

Details

Engineering Computations, vol. 40 no. 1
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 10 May 2022

Fatimah De'nan and Nor Salwani Hashim

The purpose of this work is to perform the finite element analysis (FEA) for the numerical discretization of sections with different arrangements of Web openings to investigate…

Abstract

Purpose

The purpose of this work is to perform the finite element analysis (FEA) for the numerical discretization of sections with different arrangements of Web openings to investigate the torsion behavior. Typical hexagonal and circular Web opening sections are extensively used in steel construction due to economic development in building design. However, the use of sections with different arrangements of Web opening had improved the performance of the section with Web opening in terms of structural behavior which leads to economic design compared to typical I-beam.

Design/methodology/approach

The accuracy of FE results allows extensive numerical analysis of stress concentration magnitude for sections with Web openings, concentrating on the sizes and positions of the Web opening. Five shapes and three sizes of Web opening are used in this work. The shapes involved are c-hexagon, hexagon, octagon, circular and square, whereas the sizes of the Web opening involved are 0.67 D, 0.75 D and 0.80 D where D is the height of the Web. Two types of models for 200 × 100 × 8×6 mm steel section involved which is Model 1, where the section with 50 mm edge and 150 mm center-to-center distance and Model 2, where the section with 100 mm edge and 200 mm center-to-center distance.

Findings

It was found that these configurations affect the section with various shapes of Web openings sizes (0.67 D, 0.75 D, and 0.80 D). This also includes the spacing distances, with 50 mm edge and 150 mm center-to-center distance and also a section with 100 mm edge and 200 mm center-to-center distance. Through the FEA results of Model 1 and Model 2, it is found that 50% reduction in horizontal member length in hexagon Web opening, from 50 mm to 20 mm, caused increment about 30%–53% stress concentration in Web for c-hexagon. However, for a stress analysis of c-hexagon, geometry resulted in a lower stress concentration in the Web than other Web opening.

Originality/value

Additionally, the work emphasized the efficiency of Web opening shapes by using an appropriate Web opening radius in section with c-hexagon, hexagon, octagon, square and circular shapes. The final results show the contribution of appropriate Web opening radius to increase the section torsional capacity. It is observed that the torsional capacity at certain loading condition and its angle of twist is analysed.

Details

World Journal of Engineering, vol. 20 no. 5
Type: Research Article
ISSN: 1708-5284

Keywords

Article
Publication date: 26 May 2022

Lalit K. Toke and Milind M. Patil

The purpose of this paper is to develop an organized structure for damage detection of a cracked cantilever beam using finite element method and experimental method technique.

Abstract

Purpose

The purpose of this paper is to develop an organized structure for damage detection of a cracked cantilever beam using finite element method and experimental method technique.

Design/methodology/approach

Due to presence of cracks the dynamic characteristics of structure change. The change in dynamic behavior has been used as one of the criteria of fault diagnosis for structures. Major characteristics of the structure which undergo change due to presence of crack are: natural frequencies, the amplitude responses due to vibration and the mode shapes. Therefore, an attempt has been made to formulate a smart technique for minimizing the amplitude of vibration for crack cantilever beam structures. In the analysis both single and double cracks are taken into account.

Findings

The results of the active vibration control experiments proved that piezoelectric sensor/actuator pair is an effective sensor and actuator configuration for active vibration control to reduce the amplitude of vibration for closed-loop system.

Originality/value

It is necessary that structures must safely work during its service life, but damages initiate a breakdown period on the structures which directly affect the industrial growth. It is a recognized fact that dynamic behavior of structures changes due to presence of crack. It has been observed that the presence of cracks in structures or in machine members leads to operational problem as well as premature failure.

Details

World Journal of Engineering, vol. 20 no. 5
Type: Research Article
ISSN: 1708-5284

Keywords

Article
Publication date: 8 August 2016

Miguel Abambres and Mário Rui Arruda

Since the use of advanced finite element analysis (FEA) in the design of steel structures has been increasing its popularity in order to avoid unsafe or highly conservative…

Abstract

Purpose

Since the use of advanced finite element analysis (FEA) in the design of steel structures has been increasing its popularity in order to avoid unsafe or highly conservative designs, a solid know-how in computer-aided design (CAD) and engineering (CAE) codes is necessary. Therefore the purpose of this paper is to provide an extensive review of useful guidelines concerning modelling, simulation and result validation for the accurate performance of those analyses.

Design/methodology/approach

Such guidelines are obtained from international steel design codes like Eurocode 3 and DNV, publications from experienced CAE engineers and renowned FE software companies like Ansys and Altair. Topics like mesh independence, the effect of the load sequence on the load bearing capacity and steel fracture criteria are underlined.

Findings

Since the use of advanced FEA in the design of steel structures is becoming more and more traditional due to the increase of its competitiveness when compared to the use of (very) conservative design rules, a solid know-how in CAD and CAE codes is necessary.

Practical implications

This work will be quite useful for structural steel stress engineers, contributing for a safer use of FEA in research and design.

Originality/value

This work will be quite useful for structural steel stress engineers, contributing for a safer use of FEA in research and design.

Details

International Journal of Structural Integrity, vol. 7 no. 4
Type: Research Article
ISSN: 1757-9864

Keywords

1 – 10 of 47