Search results

1 – 10 of 544
Article
Publication date: 24 June 2020

Manar Hamid Jasim, Ali Mohammad Ali Al-Araji, Bashar Dheyaa Hussein Al-Kasob and Mehdi Ranjbar

In the article, analytical model of first-order shear deformation (FSDT) beams made of jute–epoxy is presented to study the low-velocity impact response.

Abstract

Purpose

In the article, analytical model of first-order shear deformation (FSDT) beams made of jute–epoxy is presented to study the low-velocity impact response.

Design/methodology/approach

The nonlinear Hertz contact law is applied to identify the contact between projectile and beam. The energy method, Lagrange's equations and Ritz method are applied to derive the nonlinear governing equation of the beam and impactor-associated boundary condition. The motion equations are then solved simultaneously by the Runge–Kutta fourth-order method.

Findings

Also, a comparison is performed to validate the model predictions. The contact force and beam indentation histories of the jute–epoxy simply supported beam under spherical impactor with different radius and initial velocity are investigated in detail. It is found that in response to impactor radius increase, the utilization of the contact force law has resulted in a same increasing trend of peak contact force, impact duration and beam indentation, while in response to impactor initial velocity increase, the maximum contact force and beam indentation increase while impact time has vice versa trend.

Originality/value

This paper fulfills an identified need to study how jute–epoxy beam behavior with simply supported boundary conditions under low-velocity impact can be enabled.

Details

International Journal of Structural Integrity, vol. 12 no. 3
Type: Research Article
ISSN: 1757-9864

Keywords

Article
Publication date: 7 October 2014

Prasad Ramchandra Baviskar and Vinod B. Tungikar

The purpose of this paper is to address the determination of crack location and depth of multiple transverse cracks by monitoring natural frequency and its prediction using…

Abstract

Purpose

The purpose of this paper is to address the determination of crack location and depth of multiple transverse cracks by monitoring natural frequency and its prediction using Artificial Neural Networks (ANN). An alternative to the existing NDTs is suggested.

Design/methodology/approach

Modal analysis is performed to extract the natural frequency. Analysis is performed for two cases of cracks. In first case, both cracks are perpendicular to axis. In second case, both cracks are inclined to vertical plane and also inclined with each other. Finite element method (FEM) is performed using ANSYSTM software which is theoretical basis. Experimentation is performed using Fast Fourier Transform (FFT) analyzer on simply supported stepped rotor shaft and cantilever circular beam with two cracks each.

Findings

The results of FEM and experimentation are validated and are in good agreement. The error in crack detection by FEM is in the range of 3-15 percent while 5-20 percent by experimentation. The database obtained by modal analysis is used to train the network of ANN which predicts crack characteristics. Validity of method is investigated by comparing the predictions of ANN with FEM and experimentation. The results are in good agreement with error of 7-16 percent between ANN and FEM while 9-21 percent between ANN and experimental analysis.

Originality/value

It envisages that the method is capable. It is an effective as well as an alternate method of fault detection in beam/rotating element to the existing methods.

Details

Multidiscipline Modeling in Materials and Structures, vol. 10 no. 3
Type: Research Article
ISSN: 1573-6105

Keywords

Article
Publication date: 4 October 2019

Mustesin Ali Khan, Liming Jiang, Katherine Ann Cashell and Asif Usmani

Perforated composite beams are an increasingly popular choice in the construction of buildings because they can provide a structurally and materially efficient design solution…

Abstract

Purpose

Perforated composite beams are an increasingly popular choice in the construction of buildings because they can provide a structurally and materially efficient design solution while also facilitating the passage of services. The purpose of this paper is to examine the behaviour of restrained perforated beams, which act compositely with a profiled slab and are exposed to fire. The effect of surrounding structure on the composite perforated beam is incorporated in this study using a virtual hybrid simulation framework. The developed framework could also be used to analyse other structural components in fire.

Design/methodology/approach

A finite element model is developed using OpenSees and OpenFresco using a virtual hybrid simulation technique, and the accuracy of the model is validated using available fire test data. The validated model is used to investigate some of the most salient parameters such as the degree of axial and rotational restraint, arrangement of the openings and different types of fire on the overall fire behaviour of composite perforated beams.

Findings

It is shown that both axial and rotational restraint have a considerable effect on time-displacement behaviour and the fire performance of the composite perforated beam. It is observed that the rate of heating and the consequent development of elevated temperature in the section have a significant effect on the fire behaviour of composite perforated beams.

Originality/value

The paper will improve the knowledge of readers about modelling the whole system behaviour in structural fire engineering and the presented approach could also be used for analysing different types of structural components in fire conditions.

Details

Journal of Structural Fire Engineering, vol. 11 no. 1
Type: Research Article
ISSN: 2040-2317

Keywords

Article
Publication date: 4 December 2017

Subrata Kumar Mondal, Sangamesh Gondegaon and Hari Kumar Voruganti

This paper proposes a novel approach to impose the Neumann boundary condition for isogeometric analysis (IGA) of Euler–Bernoulli beam with 1-D formulation. The proposed method is…

Abstract

Purpose

This paper proposes a novel approach to impose the Neumann boundary condition for isogeometric analysis (IGA) of Euler–Bernoulli beam with 1-D formulation. The proposed method is for only IGA in which it is difficult to handle the Neumann boundary conditions. The control points of B-spline are equivalent to nodes in finite element method. With 1-D formulation, it is not possible to accommodate multiple degrees of freedom in IGA. This case arises in the analysis of beams. The paper aims to propose a way to work around this issue in a simple way.

Design/methodology/approach

Neumann boundary conditions, which are even-order derivatives (example: double derivative) of the primary variable, are inherently satisfied in the weak form. Boundary conditions with an odd number of derivatives (example: slope) are imposed with the introduction of a new penalty matrix.

Findings

The proposed method can impose a slope boundary condition for IGA of a beam using 1-D formulation.

Originality/value

From the literature, it can be observed that the beam is formulated in 1-D by considering it as either a rotation-free element or a 2-D formulation by considering shear strain along with the normal strain. The work represents 1-D formulation of a beam while considering the slope boundary condition, which is easy and effective to formulate, compared with the slope boundary conditions reported in previous works.

Details

World Journal of Engineering, vol. 14 no. 6
Type: Research Article
ISSN: 1708-5284

Keywords

Article
Publication date: 20 December 2018

Igor V. Andrianov, Jan Awrejcewicz and Alexander A. Diskovsky

The purpose of this paper is to define and solve the problem of an optimized structural topology of the simply supported beam made from functionally graded material (FGM) enabling…

Abstract

Purpose

The purpose of this paper is to define and solve the problem of an optimized structural topology of the simply supported beam made from functionally graded material (FGM) enabling achievement of a maximum buckling load.

Design/methodology/approach

Two kinds of inclusions are considered: regular distribution of inclusions of different rigidities and non-uniform distribution of identical inclusions. It is shown that the optimal conditions are similar for both structural designs. The optimization problems are solved by using the homogenization method, and the target functions belong to the class of piece-wise continuous functions. Both optimized structures exhibit border zones free of any inclusions, and the largest amount of inclusions is localized in the central zone of the beams.

Findings

It has been shown that the final result of the carried out optimization of the internal structure for both studied types of FGM are similar. The relative increase in the buckling force of the FG beam with the optimized internal structure is on amount of 20 per cent while comparing it with the regular structure beam.

Originality/value

In contrary to a standard approach, this paper is aimed to detect and study a scenario of transition from heterogeneous to its counterpart homogeneous beam structure based on the consideration of the FGM inclusions. In addition, the problem of inversed transition from the optimized homogeneous structure to the optimal heterogeneous one is solved.

Details

Engineering Computations, vol. 36 no. 1
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 13 April 2015

Ismail Bensaid, Bachir Kerboua and Cheikh Abdelmajid

The purpose of this paper is to develop a new improved solution and a new model to predict both shear and normal interfacial stress in simply supported beams strengthened with…

Abstract

Purpose

The purpose of this paper is to develop a new improved solution and a new model to predict both shear and normal interfacial stress in simply supported beams strengthened with bonded prestressed FRP laminates by taking into account the fiber volume fraction spacing that play an important role on the interfacial stresses concentration.

Design/methodology/approach

The study has been conducted by using analytical approaches for interfacial stresses in plated beams. The analysis is based on the deformation compatibility approach where both the shear and normal stresses are assumed to be invariant across the adhesive layer thickness. In addition, an unrealistic restriction of the same curvatures in the RC beam and FRP panel commonly used in most of the existing studies is released in the present theoretical formulation.

Findings

To verify the analytical model, the present predictions are compared first with those of (Malek et al., 1998; Smith and Teng, 2001) in the case of the absence of the prestressing force; for the second time, the present method is compared with that developed by (Al-Emrani and Kliger, 2006; Benachour et al., 2008) in the case where only the prestressing force is applied. From the presented results, it can be seen that the present solution agree closely with the other methods in the literature.

Originality/value

The paper puts in evidence a new originality approach theory, taking into account the mechanical load, and the prestressed FRP plate model having variable fiber spacing which considers a strength rigidity and resistance of the damaged structures, which is one aspect that has not been taken into account by the previous studies.

Details

International Journal of Structural Integrity, vol. 6 no. 2
Type: Research Article
ISSN: 1757-9864

Keywords

Article
Publication date: 18 March 2021

Rohit R. Ghadge and Prakash S.

This paper aims to focus on calculating the number of layers of composite laminates required to take the applied load made up of graphite/epoxy (AS4/3501-6) which can be used in…

Abstract

Purpose

This paper aims to focus on calculating the number of layers of composite laminates required to take the applied load made up of graphite/epoxy (AS4/3501-6) which can be used in many industrial applications. Optimization for minimization of weight by variation in the mechanical properties is possible by using different combinations of fiber angle, number of plies and their stacking sequence.

Design/methodology/approach

Lots of research studies have been put forth by aerospace industry experts to improve the performance of aircraft wings with weight constraints. The orthotropic nature of the laminated composites and their ability to characterize as per various performance requirements of aerospace industry make them the most suitable material. This leads to necessity of implementing most appropriate optimization technique for selecting appropriate parameter sets and material configurations.

Findings

In this work, exhaustive enumeration algorithm has been applied for weight minimization of fiber laminated composite beam subjected to two different loading conditions by computing overall possible stacking sequences and material properties using classical laminate theory. This combinatorial type optimization technique enumerates all possible solutions with an assurance of getting global optimum solution. Stacking sequences are filtered through Tsai-Wu failure criteria.

Originality/value

Finally, through the outcome of this optimization framework, eight different combinations of stacking sequences and 24-ply symmetric layup have been obtained. Furthermore, this 24-ply layup weighing 0.468 kg has been validated using finite element solver for given boundary conditions. Interlaminar stresses at top and bottom of the optimized ply layup were validated with Autodesk’s Helius composites solver.

Details

Aircraft Engineering and Aerospace Technology, vol. 94 no. 4
Type: Research Article
ISSN: 1748-8842

Keywords

Article
Publication date: 9 February 2022

Naoya Yotsumoto, Takeo Hirashima and Koji Toyoda

This paper aims to investigate the fire performance of composite beams when considering the hogging moment resistance of the fin-plate beam-to-girder joints including the effect…

Abstract

Purpose

This paper aims to investigate the fire performance of composite beams when considering the hogging moment resistance of the fin-plate beam-to-girder joints including the effect of continuity of reinforcements.

Design/methodology/approach

Experiments on composite beams with fin-plate joints protected only at the beam ends are conducted. The test parameter is the specification of reinforcement, which affects the rotational restraint of the beam ends. In addition, a simple method for predicting the failure time of the beam using an evaluation model based on the bending moment resistance of the beam considering the hogging moment resistance of the fin-plate joint and the reinforcement is also presented.

Findings

The test results indicate that the failure time of the beam is extended by the hogging moment resistance of the joints. This is particularly noticeable when using a reinforcing bar with a large plastic deformation capability. The predicted failure times based on the evaluation method corresponded well with the test results.

Originality/value

Recent studies have proposed large deformation analysis methods using FEM that can be used for fire-resistant design of beams including joints, but these cannot always be applicable in practice due to the cost and its complexity. Our method can consider the hogging moment resistance of the joint and the temperature distribution in the axial direction using a simple method without requirement of FEM.

Details

Journal of Structural Fire Engineering, vol. 13 no. 4
Type: Research Article
ISSN: 2040-2317

Keywords

Article
Publication date: 2 February 2022

Ali Mohammed Ali, Manar Hamid Jasim and Bashar Dheyaa Hussein Al-Kasob

The purpose of this paper is to present an applied method to design the low-speed contact between a mass and surface of a beam using an analytical solution based on the…

Abstract

Purpose

The purpose of this paper is to present an applied method to design the low-speed contact between a mass and surface of a beam using an analytical solution based on the first-order shear deformation beam theory. Also, a simulation of impact process is carried out by ABAQUS finite element (FE) code.

Design/methodology/approach

In theoretical formulation, first strains and stresses are obtained, then kinetic and potential energies are written, and using a combination of Ritz and Lagrange methods, a set of system of motion equations in the form of mass, stiffness and force matrices is obtained. Finally, the motion equations are solved using Runge–Kutta fourth order method.

Findings

The von Mises stress contours at the impact point and contact force from the ABAQUS simulation are illustrated and it is revealed that the theoretical solution is in good agreement with the FE code. The effect of changes in projectile speed, projectile diameter and projectile mass on the results is carefully examined with particular attention to evaluate histories of the impact force and beam recess. One of the important results is that changes in projectile speed have a greater effect on the results than changes in projectile diameter, and also changes in projectile mass have the least effect.

Originality/value

This paper presents a combination of methods of energy, Ritz and Lagrange and also FE code to simulate the problem of sandwich beams under low velocity impact.

Details

Journal of Engineering, Design and Technology , vol. 22 no. 2
Type: Research Article
ISSN: 1726-0531

Keywords

Article
Publication date: 25 January 2023

Yongliang Wang

This study aimed to overcome the challenging issues involved in providing high-precision eigensolutions. The accurate prediction of the buckling load bearing capacity under…

Abstract

Purpose

This study aimed to overcome the challenging issues involved in providing high-precision eigensolutions. The accurate prediction of the buckling load bearing capacity under different crack damage locations, sizes and numbers, and analysing the influence mechanism of crack damage on buckling instability have become the needs of theoretical research and engineering practice. Accordingly, a finite element method was developed and applied to solve the elastic buckling load and buckling mode of curved beams with crack damage. However, the accuracy of the solution depends on the quality of mesh, and the solution inevitably introduces errors due to mesh. Therefore, the adaptive mesh refinement method can effectively optimise the mesh distribution and obtain high-precision solutions.

Design/methodology/approach

For the elastic buckling of circular curved beams with cracks, the section damage defect analogy scheme of a circular arc curved beam crack was established to simulate the crack size (depth), position and number. The h-version finite element mesh adaptive analysis method of the variable section Euler–Bernoulli beam was introduced to solve the elastic buckling problem of circular arc curved beams with crack damage. The optimised mesh and high-precision buckling load and buckling mode solutions satisfying the preset error tolerance were obtained.

Findings

The results of testing typical examples show that (1) the established section damage defect analogy scheme of circular arc curved beam crack can effectively realise the simulation of crack size (depth), position and number. The solution strictly satisfies the preset error tolerance; (2) the non-uniform mesh refinement in the algorithm can be adapted to solve the arbitrary order frequencies and modes of cracked cylindrical shells under the conditions of different ring wave numbers, crack positions and crack depths; and (3) the change in the buckling mode caused by crack damage is applicable to the study of elastic buckling under various curved beam angles and crack damage distribution conditions.

Originality/value

This study can provide a novel strategy for the adaptive mesh refinement for finite element analysis of elastic buckling of circular arc curved beams with crack damage. The adaptive mesh refinement method established in this study is fundamentally different from the conventional finite element method which employs the user experience to densify the meshes near the crack. It can automatically and flexibly generate a set of optimised local meshes by iteratively dividing the fine mesh near the crack, which can ensure the high accuracy of the buckling loads and modes. The micro-crack in curved beams is also characterised by weakening the cross-sectional stiffness to realise the characterisation of locations, depths and distributions of multiple crack damage, which can effectively analyse the disturbance behaviour of different forms of micro-cracks on the dynamic behaviour of beams.

1 – 10 of 544