Search results

1 – 10 of 624
Article
Publication date: 13 April 2015

Spyros Papaefthymiou, Constantinos Goulas and Vasiliki Panteleakou

Identification of the critical process conditions that enhance Cu diffusion in ferrite grain boundaries and promote precipitation of Cu-rich particles in the proximity of steel…

176

Abstract

Purpose

Identification of the critical process conditions that enhance Cu diffusion in ferrite grain boundaries and promote precipitation of Cu-rich particles in the proximity of steel semi-finished products surface is crucial for every steel maker as it leads to the creation of hot shortness cracks in final products deteriorating surface condition. The purpose of this paper is to reveal the possible effect of Cu segregation in the metal/oxide interface, its role in surface crack initiation and, finally, to propose actions to prevent from hot shortness issues throughout the production chain of steel products.

Design/methodology/approach

The here presented study was based on S355 steel plate production starting from re-melting of scrap in an EAF, followed by metallurgical treatment in a Ladle Furnace, continuous casting, re-heating (RH) and thermo-mechanical rolling in a reversing mill. For the purposes of this study, more than ten heats, 100 t of steel each, were analyzed. Here presented are depicted steels in the high and low end of the permitted Cu-wt-% spectrum, 0.4 wt-% Cu (0.15 wt-% C, 1.1 wt-% Mn, VTi micro-alloyed steel) and 0.25 wt-% Cu (0.09 wt-% C, 1.2 wt-% Mn, NbTi micro alloyed steel), respectively.

Findings

Although Cu levels of 0.25-0.40 wt-% are well below the Cu solubility in austenite and ferrite (8 percent wt-% and 3 wt-% Cu, respectively) and within specifications, precipitation of Cu-rich particles is observed in industrial semi-finished and/or final products. Cu-rich precipitates and Cu segregation along grain boundaries near the steel surface lead to hot shortness cracks in industrial products.

Research limitations/implications

Hot shortness surface defects related to Cu presence in steel having significantly lower Cu amounts than its maximum solubility in austenite and ferrite does not make sense in first place. Correctly, Cu is expected to remain in solid solution. Identification of Cu-rich particles is explained on the basis of the development of double diffusion actions: interstitial diffusion of carbon (decarburization) and substitution diffusion of copper. Root cause analysis and reliable countermeasures will save financial and material resources during steel production.

Originality/value

Automobile scrap re-melting results in noticeable Cu amounts in EAF produced steel. Presence of Cu-rich particles in grain boundaries near the surface of intermediate or final products deteriorates surface quality through relevant surface defects. Identification of Cu-rich particles is explained on the basis of the development of double diffusion actions: interstitial diffusion of carbon and substitution diffusion of copper. Pre condition for metallic Cu precipitation in ferrite is the Cu amount to be above 3 wt-%, which is ten times higher than the usual permitted Cu amount in such steel grades. This pre-condition is met through austenite oxidation during RH.

Details

International Journal of Structural Integrity, vol. 6 no. 2
Type: Research Article
ISSN: 1757-9864

Keywords

Article
Publication date: 5 December 2016

Ruijie Zhang, Xiaoyan Liu, Zhaopeng Wang and Fei Gao

The purpose of this study is to research the effects of interrupted aging on the corrosion behavior of Al–Cu–Mg–Ag heat-resistant alloy by means of intergranular corrosion (IGC…

Abstract

Purpose

The purpose of this study is to research the effects of interrupted aging on the corrosion behavior of Al–Cu–Mg–Ag heat-resistant alloy by means of intergranular corrosion (IGC) testing, potentiodynamic polarization combined with optical microscopy and transmission electron microscopy.

Design/methodology/approach

The results show that the IGC began on the grain boundaries and continued along the grain boundary. The corrosion resistance property of Al–Cu–Mg–Ag alloy was enhanced by interrupted aging. The precipitations of the interrupted aged sample both in the grains and on the grain boundaries were fine, and the chain-like phases on the grain boundary were distributed nearly continuously.

Findings

The corrosion resistance of Al–Cu–Mg series Al alloy with equilibrium phase (Al2Cu) is notably determined by precipitation-free zone (PFZ) as the self-corrosion potentials of (Al2Cu), PFZ and the matrix satisfied the relation EPFZ < Eθ<EMatrix.

Originality/value

The connections of the PFZ on both sides of the grain boundary decreased the corrosion resistance of Al–Cu–Mg–Ag alloy treated by the single aging.

Details

World Journal of Engineering, vol. 13 no. 6
Type: Research Article
ISSN: 1708-5284

Keywords

Article
Publication date: 1 January 1981

P. Brezina and B. Sonderegger

The parameters solution temperature, intermediate treatment and cooling rate (from high temperature and after tempering) were examined by statistical multiple factor analysis…

Abstract

The parameters solution temperature, intermediate treatment and cooling rate (from high temperature and after tempering) were examined by statistical multiple factor analysis. Tempering temperature (200 to 650°C) and duration (4 to 64 h) were graded exhaustively.

Details

Anti-Corrosion Methods and Materials, vol. 28 no. 1
Type: Research Article
ISSN: 0003-5599

Article
Publication date: 13 January 2020

Ş. Hakan Atapek, Spiros Pantelakis, Şeyda Polat, Apostolos Chamos and Gülşah Aktaş Çelik

The purpose of this paper is to investigate the fatigue behavior of precipitation-strengthened Cu‒2.55Ni‒0.55Si alloy, modified by the addition of 0.25 Cr and 0.25 Zr (wt%), using…

Abstract

Purpose

The purpose of this paper is to investigate the fatigue behavior of precipitation-strengthened Cu‒2.55Ni‒0.55Si alloy, modified by the addition of 0.25 Cr and 0.25 Zr (wt%), using mechanical and fractographical studies to reveal the effect of microstructural features on the fracture.

Design/methodology/approach

For strengthening, cast and hot forged alloy was subjected to solution annealing at 900°C for 60 min, followed by quenching in water and then aging at 490°C for 180 min. Precipitation-hardened alloy was exposed to fatigue tests at R=−1 and different stress levels. All fracture surfaces were examined within the frame of fractographical analysis.

Findings

Fine Ni-rich silicides responsible for the precipitation strengthening were observed within the matrix and their interactions with the dislocations at lower stress level resulted in localized shearing and fine striations. Although, by the addition of Cr and Zr, the matrix consisted of hard Ni, Zr-rich and Cr-rich silicides, these precipitates adversely affected the fatigue behavior acting as nucleation sites for cracks.

Originality/value

These findings contribute to the present knowledge by revealing the effect of microstructural features on the mechanical behavior of precipitation-hardened Cu‒Ni‒Si alloy modified by Cr and Zr addition.

Details

International Journal of Structural Integrity, vol. 11 no. 6
Type: Research Article
ISSN: 1757-9864

Keywords

Article
Publication date: 1 June 2005

Günter Grossmann, Joy Tharian, Pascal Jud and Urs Sennhauser

The goal of this work is to evaluate the feasibility of soldering tin‐silver‐copper balled BGAs using tin‐lead‐based solder and to investigate the influence of different…

1684

Abstract

Purpose

The goal of this work is to evaluate the feasibility of soldering tin‐silver‐copper balled BGAs using tin‐lead‐based solder and to investigate the influence of different production parameters on the microstructure of the solder joint.

Design/methodology/approach

The soldering of the BGAs was done with various temperature profiles and two conveyor speeds under a nitrogen atmosphere in a full convection oven. One specimen from each temperature/time combination was cross‐sectioned. The cross sections were analysed with optical microscopy, scanning electron microscopy with energy dispersive X‐ray spectroscopy (SEM/EDS) at 30 kV and focused ion beam microscopy (FIB).

Findings

The cross sections show a metallurgical bond between the solder and the tin‐silver‐copper balls of the BGA, even at a peak reflow temperature of 210°C. However, the balls alloy only partially with the solder, as the liquidus of tin‐silver‐copper balls is 217°C. As soon as the peak temperature exceeds the liquidus of the ball, the solder is totally dissolved in the material of the ball. A reflow profile with a peak temperature of about 230°C on the BGA gives a homogenous reaction of the solder with the ball with a minimum formation of voids.

Research limitations/implications

The dependence of varying reflow parameters on reliability requires detailed study. Especially the effect of a partially melted ball on the degradation of the solder joint needs to be investigated.

Originality/value

From the findings, it can be said that soldering lead‐free balls with tin‐lead solder is possible. This is useful during the transitional period that the industry is in at the moment. More and more component manufacturers are changing their components to lead‐free, often without notice to the customer. If a production line is still running a tin‐lead process it is essential to know how to process these components with tin‐lead solder.

Details

Soldering & Surface Mount Technology, vol. 17 no. 2
Type: Research Article
ISSN: 0954-0911

Keywords

Article
Publication date: 14 July 2020

Rabiatul Adawiyah Mohamed Anuar and Saliza Azlina Osman

The surface finish is an essential step in printed circuit boards design because it provides a solderable surface for electronic components. The purpose of this study to…

Abstract

Purpose

The surface finish is an essential step in printed circuit boards design because it provides a solderable surface for electronic components. The purpose of this study to investigate the effects of different surface finishes during the soldering and ageing process.

Design/methodology/approach

The solder joints of Sn-4.0Ag-0.5Cu/Cu and Sn-4.0Ag-0.5Cu/electroless nickel/immersion silver (ENImAg) were investigated in terms of intermetallic (IMC) thickness, morphology and shear strength. The microstructure and compositions of solder joints are observed, and analyzed by using scanning electron microscopy (SEM-EDX) and optical microscope (OM).

Findings

Compounds of Cu6Sn5 and (Cu, Ni)6Sn5 IMC were formed in SAC405/Cu and SAC405/ENImAg, respectively, as-reflowed. When the sample was exposed to ageing, new layers of Cu3Sn and (Ni, Cu)3Sn5 were observed at the interface. Analogous growth in the thickness of the IMC layer and increased grains size commensurate with ageing time. The results equally revealed an increase in shear strength of SAC405/ENImAg because of the thin layer of IMC and surface finish used compared to SAC405/Cu. Hence, a ductile fracture was observed at the bulk solder. Overall, the ENImAg surface finish showed excellent performance of solder joints than that of bare Cu.

Originality/value

The novel surface finish (ENImAg) has been developed and optimized. This alternative lead-free surface finish solved the challenges in electroless nickel/immersion gold and reduced cost without affecting the performance.

Details

Soldering & Surface Mount Technology, vol. 33 no. 2
Type: Research Article
ISSN: 0954-0911

Keywords

Article
Publication date: 29 June 2010

Sibel Zor, Muzaffer Zeren, Hatice Ozkazanc and Erdem Karakulak

The purpose of this paper is to understand corrosion behavior of different Cu‐containing Al‐Si‐x% Cu alloys (x: 1 wt% Cu, 2 wt% Cu, 3 wt% Cu, 4 wt% Cu, and 5 wt% Cu) in 0.1 M HCl…

Abstract

Purpose

The purpose of this paper is to understand corrosion behavior of different Cu‐containing Al‐Si‐x% Cu alloys (x: 1 wt% Cu, 2 wt% Cu, 3 wt% Cu, 4 wt% Cu, and 5 wt% Cu) in 0.1 M HCl and 0.1 M H2SO4.

Design/methodology/approach

Potentiodynamic, chronoamperometric and impedance measurements were applied to specimens to obtain their electrochemical characteristics. For the long‐term analyses, hydrogen evolution with immersion time (Vt) was measured. The corroded surfaces of the alloys were investigated using scanning electron microscopy (SEM) to understand the corrosion mechanism.

Findings

All experimental investigations showed that the corrosion resistance of alloys increased with increasing Cu content in the alloys.

Research limitations/implications

Cu‐containing aluminum alloys are age‐hardenable alloys. The corrosion behaviour of these alloys can be changed by heat treatment. Corrosion test results for the heat treated and aged alloys will be discussed in another study.

Originality/value

Al‐Si‐Cu alloys are widely used in the automobile industry and the corrosion behaviour of these alloys has a great importance on the service life of these materials. Understanding the effect of copper and the corrosion mechanism of these alloys will be helpful in predicting and prolonging the service life of these materials.

Details

Anti-Corrosion Methods and Materials, vol. 57 no. 4
Type: Research Article
ISSN: 0003-5599

Keywords

Article
Publication date: 12 April 2018

Aref Mehditabar, Gholam H. Rahimi and Seyed Ebrahim Vahdat

The purpose of this paper is to investigate the characterizations of high energy thick-walled functionally graded (FG) cylinder containing Al-26%Cu fabricated by horizontal…

Abstract

Purpose

The purpose of this paper is to investigate the characterizations of high energy thick-walled functionally graded (FG) cylinder containing Al-26%Cu fabricated by horizontal centrifugal casting technique.

Design/methodology/approach

Field emission scanning electron microscopy in conjunction with image analyser software and energy dispersion spectroscopy is applied to measure the variations of constituent phase’s content and elemental ratios along the radial direction, respectively. Distributions of the FG properties are measured through hardness, CTE, E and σy along the radial direction to investigate the mechanical and physical properties corresponding to the variations in microstructure. In addition, the variations of wear rate along the thickness are evaluated through a series of dry sliding wear tests using the pin-on-disk wear machine. Moreover, scanning electron microscopy is employed to characterize the worn-out surfaces and morphology of wear debris in order to clarify the dominant operative wear mechanism.

Findings

Results showed that Al2Cu content gradually decreases from the inner wall containing 33.3 vol.% to outer wall containing 26.4 vol.% in the FG cylindrical shell. The elastic modulus and yield strength measured through compression tests reveal that these mechanical properties are limited up to certain value of Al2Cu. The obtained optimum value of Al2Cu content for studied Al-Al2Cu FG is almost 31 vol.%.

Originality/value

The obtained optimum value of Al2Cu content for studied Al-Al2Cu FG was almost 31 vol.%.

Details

Multidiscipline Modeling in Materials and Structures, vol. 14 no. 4
Type: Research Article
ISSN: 1573-6105

Keywords

Article
Publication date: 14 February 2018

Zuozhu Yin, Fenglian Sun, Yang Liu and Yang Liu

The purpose of this paper is to investigate growth kinetics of interfacial Cu-Sn intermetallic compound (IMC) at the solid Cu/liquid Sn interface.

Abstract

Purpose

The purpose of this paper is to investigate growth kinetics of interfacial Cu-Sn intermetallic compound (IMC) at the solid Cu/liquid Sn interface.

Design/methodology/approach

The Sn/Cu solid–liquid interfacial IMCs are fabricated under various soldering temperatures (240°C-270°C) and soldering times (5-240 s) by dipping method. The thickness and morphology of IMC are observed and analyzed by the optical microscope and scanning electron microscope.

Findings

Holding at 260°C, Cu/Sn solid–liquid interface Cu6Sn5 growth index experience a change from 0.08 to 0.30 within 10-190 s. The growth index is 0.08 in 10-40 s; the growth index is 0.30 in 40-190 s. Cu6Sn5 grain coarsening index is constant within 10-190 s. It is 0.13. The result of the index of Cu6Sn5 grain coarsening is different from predecessors 27 results Cu6Sn5 grain coarsening index for 1/3. This is because Cu6Sn5 grain grows at the expense of its near small grain to reduce the surface Gibbs free energy, and its morphology changes from regular shape to irregular shape. It sets up the mathematical expression about the initial formation time and temperature of Cu3Sn in 240°C-270°C.

Originality/value

It obtains a mathematical model to express the changes of solid–liquid interface frontier concentration which has an effect on the interfacial Cu6Sn5 layer growth index and the Cu6Sn5 grain coarsening index. Different indexes can be obtained by establishing relevance equations, which can be used to predict the growth of the interface IMC layer. This mathematical model is established to design the solder pads and the sizes of the solder joints.

Details

Soldering & Surface Mount Technology, vol. 30 no. 3
Type: Research Article
ISSN: 0954-0911

Keywords

Article
Publication date: 3 September 2019

Yong Zhou, Pei Zhang, Jinping Xiong and Fuan Yan

A chromate conversion coating was prepared on the surface of bare AA2024 aluminum alloy by direct immersion in the chromating treatment bath, and the corrosion behavior of…

Abstract

Purpose

A chromate conversion coating was prepared on the surface of bare AA2024 aluminum alloy by direct immersion in the chromating treatment bath, and the corrosion behavior of chromated AA2024 aluminum alloy in 3.5 per cent NaCl solution was studied by electrochemical measurement and microstructural observation.

Design/methodology/approach

According to the polarization curve test and the scanning electron microscope observation, the corrosion evolution of chromated AA2024 in 3.5 per cent NaCl solution was divided into the following three stages: coating failure, pitting corrosion and intergranular corrosion (IGC).

Findings

In the first stage, the chromate coating degraded gradually due to the combined action of chloride anions and water molecules, resulting in the complete exposure of AA2024 substrate to 3.5 per cent NaCl solution. Subsequently, in the second stage, chloride anions adsorbed at the sites of θ phase (Al2Cu) and S phase (Al2CuMg) on the AA2024 surface preferentially, and some corrosion pits initiated at the above two sites and propagated towards the deep of crystal grains. However, the propagation of a pit terminated when the pit front arrived at the adjacent grain boundary, where the initiation of IGC occurred.

Originality/value

Finally, in the third stage, the corrosion proceeded along the continuous grain boundary net and penetrated the internal of AA2024 substrate, resulting in the propagation of IGC. The related corrosion mechanisms for the bare and the chromated AA2024 were also discussed.

Details

Anti-Corrosion Methods and Materials, vol. 66 no. 6
Type: Research Article
ISSN: 0003-5599

Keywords

1 – 10 of 624