Search results

1 – 10 of 399
Article
Publication date: 1 November 2006

Fuad M. Khoshnaw and Ramadhan H. Gardi

Two types of aluminium alloys, 2024‐T3 and 7075‐T6, having been selected, this study aims to investigate the effect of metallurgical aspects on intergranular corrosion.

2309

Abstract

Purpose

Two types of aluminium alloys, 2024‐T3 and 7075‐T6, having been selected, this study aims to investigate the effect of metallurgical aspects on intergranular corrosion.

Design/methodology/approach

To determine and evaluate the metallurgical effects of heat treatments on corrosion behaviour of these alloys, G67 ASTM test was selected.

Findings

The results showed that with increasing the aging time in aluminium alloy type 2024‐T3 the susceptibility to intergranular corrosion increases, while in type 7075‐T6 with increasing aging time the intergranular corrosion rate remains nearly unchanged.

Practical implications

As these results refer to precipitate the intermetallic compound phases, the amount of these phases increases with the increase of the aging time in both alloys.

Originality/value

The investigations showed that the phases that initiate in 2024‐T3 act as anode sites, while in 7075‐T6 they act as cathode sites.

Details

Anti-Corrosion Methods and Materials, vol. 53 no. 6
Type: Research Article
ISSN: 0003-5599

Keywords

Article
Publication date: 2 September 2021

Lei Fu, Hui Li, Li Lin, Qingyuan Wang, Qi Fan, Xinjie Huang, XiuLan Li, Sheng Lai and Lifei Chen

Most supersonic aircraft were manufactured using 2A70 aluminum alloy. The purpose of this paper is to study the corrosion mechanism and fatigue behavior of an aircraft in a…

Abstract

Purpose

Most supersonic aircraft were manufactured using 2A70 aluminum alloy. The purpose of this paper is to study the corrosion mechanism and fatigue behavior of an aircraft in a semi-industrial atmospheric corrosive environment, alternating effects of corrosion and fatigue were used to simulate the aircraft’s ground parking corrosion and air flight fatigue.

Design/methodology/approach

For this purpose, the aluminum alloy samples were subjected to pre-corrosion and alternating corrosion-fatigue experiments. The failure mechanisms of corrosion and corrosion fatigue were analyzed using microscopic characterization methods of electrochemical testing, X-ray diffraction and scanning electron microscopy. Miner’s linear cumulative damage rule was used to predict the fatigue life of aluminum alloy and to obtain its safe fatigue life.

Findings

The results showed that the corrosion damage caused by the corrosive environment was gradually connected by pitting pits to form denudation pits along grain boundaries. The deep excavation of chloride ions and the presence of intergranular copper-rich phases result in severe intergranular corrosion morphology. During cyclic loading, alternating hardening and softening occurred. The stress concentration caused by surface pitting pits and denudation pits initiated fatigue cracks at intergranular corrosion products. At the same time, the initiation of multiple fatigue crack sources was caused by the corrosion environment and the morphology of the transient fracture zone was also changed, but the crack propagation rate was not basically affected. The polarization curve and impedance analysis results showed that the corrosion rate increases first, decreases and then increases. Fatigue failure behavior was directly related to micro characteristics such as corrosion pits and microcracks.

Originality/value

In this research, alternating effects of corrosion and fatigue were used to simulate the aircraft’s ground parking corrosion and air flight fatigue. To study the corrosion mechanism and fatigue behavior of an aircraft in a semi-industrial atmospheric corrosive environment, the Miner’s linear cumulative damage rule was used to predict the fatigue life of aluminum alloy and to obtain its safe fatigue life.

Details

Anti-Corrosion Methods and Materials, vol. 68 no. 5
Type: Research Article
ISSN: 0003-5599

Keywords

Article
Publication date: 8 September 2012

Anna Arutunow

The purpose of this paper is to focus on diversification between electrical parameters determined on the basis of instantaneous impedance measurements within the activation and…

Abstract

Purpose

The purpose of this paper is to focus on diversification between electrical parameters determined on the basis of instantaneous impedance measurements within the activation and reactivation scan of dissolution of sensitized AISI 304 stainless steel during a proceeding intergranular corrosion process.

Design/methodology/approach

The investigations were carried out by means of dynamic electrochemical impedance spectroscopy (DEIS). DEIS measurements were conducted “on‐line” while the samples were polarized in agreement with a measurement procedure presented in the ASTM G108‐94 standard, in order to guarantee conditions equivalent with the DL‐EPR tests performed on AISI 304 stainless steel.

Findings

Performed researches revealed the advantages of the DEIS technique over standard double‐loop electrochemical potentiokinetic reactivation (DL‐EPR) tests in the field of intergranular corrosion investigations. Application of the DEIS technique made it possible to trace instantaneous changes in the examined system's impedance versus potential during the intergranular corrosion process. The form of recorded DEIS spectra and obtained distribution of measurement frequencies within the reactivation potential range were equivalent to those obtained for pure iron dissolution in sulfuric acid medium. As a result, instantaneous changes of electrical double layer capacitance and charge transfer resistance as a function of potential have been obtained in the range of activation and reactivation scans.

Originality/value

The paper provides information regarding diversification between the electrical double layer capacitance and the charge transfer resistance determined for sensitized AISI 304 stainless steel with respect to polarization conditions during the standard DL‐EPR test, which were obtained in order to evaluate the susceptibility to intergranular corrosion.

Details

Anti-Corrosion Methods and Materials, vol. 59 no. 5
Type: Research Article
ISSN: 0003-5599

Keywords

Article
Publication date: 21 March 2022

Yanqin Wang, Lulu Wang, Xiao Yan Liu, Hongru Yang, Yuan Zhang and Xiaosong Zhu

The effects of the thermo-mechanical treatment on the properties and microstructure of the Al–Cu–Mg–Ag alloy were investigated.

78

Abstract

Purpose

The effects of the thermo-mechanical treatment on the properties and microstructure of the Al–Cu–Mg–Ag alloy were investigated.

Design/methodology/approach

A short-duration preprecipitation process is designed prior to predeformation aging. The novel predeformation aging (solution treatment + holding at 185 °C for 15 min+ rolling deformation + aging at 185 °C, also named T8) was performed on a heat-resistant Al–Cu–Mg–Ag alloy.

Findings

The purpose of this study indicate that a short-duration heat treatment before predeformation is beneficial to the precipitation of O during the aging process. The precursors of O during this process might pin the dislocation and cause the grains to orient along some specific direction, which might be advantageous to the precipitation of O while disadvantageous to that of θ′. This novel thermal-mechanical process could result in an increase in the quantity and decrease in the size of the precipitation of O, which leads to a remarkable strength effect. The potential increases while the current density decreases with an increase in the deformation amount, which implies a smaller intergranular corrosion rate. The fine deformed structure leads to an opposite behavior in the exfoliation corrosion test compared with that for intergranular corrosion.

Originality/value

The intergranular corrosion resistance of the Al–Cu–Mg–Ag alloy is enhanced, whereas the exfoliation corrosion resistance is reduced by novel predeformation aging.

Details

World Journal of Engineering, vol. 19 no. 3
Type: Research Article
ISSN: 1708-5284

Keywords

Article
Publication date: 31 January 2020

Hui Li, Lei Fu, Li Lin, Yu Chen, YunRong Luo, XiuLan Li, WenLing Xie and Qingyuan Wang

In summary, it can be found that the current research on the simulation of natural atmospheric dry–wet alternating accelerated corrosion mainly focused on the study of…

Abstract

Purpose

In summary, it can be found that the current research on the simulation of natural atmospheric dry–wet alternating accelerated corrosion mainly focused on the study of electrochemical corrosion process and the study of corrosion rate; the micro-pre-corrosion mechanism of materials in this environment, especially for materials. The specific effects of fatigue and fracture performance still lack detailed research. Accordingly, this study aims to more realistically simulate the effect of natural atmospheric corrosion environment on the corrosion resistance and fatigue performance of aircraft skin.

Design/methodology/approach

In this study, the uniaxial strain control method was used to test the fatigue performance of pre-corrosion samples under simulated natural atmospheric corrosion using MTS809 tensile-torque composite fatigue machine. Scanning electron microscopy, X-ray energy spectrum analysis, atomic force microscopy and X-ray diffraction analysis were used. Fatigue fracture, corrosion morphology and corrosion products were analyzed.

Findings

The results show that the deep corrosion pit caused by pre-corrosion environment leads to multi-source initiation of crack; the fatigue life of pre-corroded sample decreases by about one-half, chloride ion invades the material and promotes intergranular corrosion; life prediction results show that the natural atmospheric corrosive environment mainly affects the plastic term in the Manson–Coffin formula resulting in a decrease in fatigue life.

Originality/value

Innovative experimental schemes and materials are used and the test temperature and relative humidity are strictly controlled. The corrosion failure mechanism of 2A70-T6 aluminum alloy under alternating wet and dry accelerated corrosion environment and its influence on fatigue behavior were obtained.

Details

Anti-Corrosion Methods and Materials, vol. 67 no. 2
Type: Research Article
ISSN: 0003-5599

Keywords

Article
Publication date: 1 February 2016

Spiros Pantelakis, Dorothea Setsika, Apostolos Chamos and Anna Zervaki

The purpose of this paper is to quantify the corrosion damage evolution that has occurred on the aircraft aluminum alloy 2024 after the exposure to Exfoliation Corrosion Test…

Abstract

Purpose

The purpose of this paper is to quantify the corrosion damage evolution that has occurred on the aircraft aluminum alloy 2024 after the exposure to Exfoliation Corrosion Test (EXCO) solution. Moreover, the effect of the evolving corrosion damage on the materials mechanical properties has been assessed. The relevance of the corrosion damage induced by the exposure to the laboratory EXCO for linking it to the damage developed after the exposure of the material on several outdoor corrosive environments or in service is discussed.

Design/methodology/approach

To induce corrosion damage the EXCO has been used. For the quantification of corrosion damage the metallographic features considered have been pit depth, diameter, pitting density and pit shape. The effect of the evolving corrosion damage on the materials mechanical properties has been assessed by means of tensile tests on pre corroded specimens.

Findings

The results have shown that corrosion damage starts from pitting and evolves to exfoliation, after the development of intergranular corrosion. This evolution is expressed by the increase of the depth of attack, as well as through the significant growth of the diameter of the damaged areas. The results of the tensile tests performed on pre corroded material made an appreciable decrease of the materials tensile properties evident. The decrease of the tensile ductility may become dramatic and increases on severity with increasing corrosion exposure time. SEM fractography revealed a quasi-cleavage zone beneath the depth of corrosion attack.

Originality/value

The results underline the impact of corrosion damage on the mechanical behavior of the aluminum alloy 2024 T3 and demonstrate the need for further investigation of the corrosion effect on the structural integrity of the material. This work provides an experimental database concerning the quantification of corrosion damage evolution and the loss of material properties due to corrosion.

Details

International Journal of Structural Integrity, vol. 7 no. 1
Type: Research Article
ISSN: 1757-9864

Keywords

Article
Publication date: 5 December 2016

Ruijie Zhang, Xiaoyan Liu, Zhaopeng Wang and Fei Gao

The purpose of this study is to research the effects of interrupted aging on the corrosion behavior of Al–Cu–Mg–Ag heat-resistant alloy by means of intergranular corrosion (IGC…

Abstract

Purpose

The purpose of this study is to research the effects of interrupted aging on the corrosion behavior of Al–Cu–Mg–Ag heat-resistant alloy by means of intergranular corrosion (IGC) testing, potentiodynamic polarization combined with optical microscopy and transmission electron microscopy.

Design/methodology/approach

The results show that the IGC began on the grain boundaries and continued along the grain boundary. The corrosion resistance property of Al–Cu–Mg–Ag alloy was enhanced by interrupted aging. The precipitations of the interrupted aged sample both in the grains and on the grain boundaries were fine, and the chain-like phases on the grain boundary were distributed nearly continuously.

Findings

The corrosion resistance of Al–Cu–Mg series Al alloy with equilibrium phase (Al2Cu) is notably determined by precipitation-free zone (PFZ) as the self-corrosion potentials of (Al2Cu), PFZ and the matrix satisfied the relation EPFZ < Eθ<EMatrix.

Originality/value

The connections of the PFZ on both sides of the grain boundary decreased the corrosion resistance of Al–Cu–Mg–Ag alloy treated by the single aging.

Details

World Journal of Engineering, vol. 13 no. 6
Type: Research Article
ISSN: 1708-5284

Keywords

Article
Publication date: 1 April 1973

Sándor Polgáry

The problem The resistance to intercrystalline corrosion has been the subject of very thorough investigations. On reading through published research results it is, however…

Abstract

The problem The resistance to intercrystalline corrosion has been the subject of very thorough investigations. On reading through published research results it is, however, surprising that all the large scale investigations were done on rolled material, whilst information on weld metal is very sparse.

Details

Anti-Corrosion Methods and Materials, vol. 20 no. 4
Type: Research Article
ISSN: 0003-5599

Article
Publication date: 24 January 2023

Xiangyu Wang, Pei He, Qinglong Zhou, Qingyuan Zhou, Manlang Cheng, Yangting Sun, Yiming Jiang, Laizhu Jiang and Jin Li

The purpose of this study is to investigate the intergranular corrosion (IGC) susceptibility of a nitrogen-containing austenitic stainless steel QN2109. The intergranular corrosion

Abstract

Purpose

The purpose of this study is to investigate the intergranular corrosion (IGC) susceptibility of a nitrogen-containing austenitic stainless steel QN2109. The intergranular corrosion (IGC) susceptibility of a nitrogen-containing austenitic stainless steel QN2109 was investigated.

Design/methodology/approach

The double-loop electrochemical potentiodynamic reactivation (DL-EPR) tests were carried out. Scanning electron microscopy and atomic force microscopy were used to characterize the microstructure.

Findings

The optimized test condition for QN2109 was 1 M H2SO4 + 0.01 M NH4SCN at 40°C. The nose temperature of the temperature–time–sensitization (TTS) curve of QN2109 plot was approximately 750°C. Moreover, the IGC susceptibility started to appear at approximately 120 min. The Cr-depletion zone of QN2109 was generated by the formation of M23C6 rather than by the addition of nitrogen. The depth–width ratio of the grain boundaries after the DL-EPR tests decreased as the aging temperature increased. The degree of Cr depletion and size of the Cr-depletion zone at the grain boundary were reflected by the degree of sensitization and depth–width ratio, respectively.

Originality/value

The optimized test condition for DL-EPR tests of a nitrogen-containing austenitic stainless steel QN2109 was investigated. The TTS curve of QN2109 was first plotted to avoid IGC failure. The morphology of the Cr-depletion zone was reflected by the depth–width ratio.

Details

Anti-Corrosion Methods and Materials, vol. 70 no. 2
Type: Research Article
ISSN: 0003-5599

Keywords

Article
Publication date: 3 September 2019

Yong Zhou, Pei Zhang, Jinping Xiong and Fuan Yan

A chromate conversion coating was prepared on the surface of bare AA2024 aluminum alloy by direct immersion in the chromating treatment bath, and the corrosion behavior of…

Abstract

Purpose

A chromate conversion coating was prepared on the surface of bare AA2024 aluminum alloy by direct immersion in the chromating treatment bath, and the corrosion behavior of chromated AA2024 aluminum alloy in 3.5 per cent NaCl solution was studied by electrochemical measurement and microstructural observation.

Design/methodology/approach

According to the polarization curve test and the scanning electron microscope observation, the corrosion evolution of chromated AA2024 in 3.5 per cent NaCl solution was divided into the following three stages: coating failure, pitting corrosion and intergranular corrosion (IGC).

Findings

In the first stage, the chromate coating degraded gradually due to the combined action of chloride anions and water molecules, resulting in the complete exposure of AA2024 substrate to 3.5 per cent NaCl solution. Subsequently, in the second stage, chloride anions adsorbed at the sites of θ phase (Al2Cu) and S phase (Al2CuMg) on the AA2024 surface preferentially, and some corrosion pits initiated at the above two sites and propagated towards the deep of crystal grains. However, the propagation of a pit terminated when the pit front arrived at the adjacent grain boundary, where the initiation of IGC occurred.

Originality/value

Finally, in the third stage, the corrosion proceeded along the continuous grain boundary net and penetrated the internal of AA2024 substrate, resulting in the propagation of IGC. The related corrosion mechanisms for the bare and the chromated AA2024 were also discussed.

Details

Anti-Corrosion Methods and Materials, vol. 66 no. 6
Type: Research Article
ISSN: 0003-5599

Keywords

1 – 10 of 399