Search results

1 – 10 of 405
Article
Publication date: 30 December 2019

Shitendu Some and Sisir Kumar Guha

In the application of hydrostatic double-layered porous journal bearings, misalignment of bearing systems is a major problem. On the other hand, the use of coupled-stress fluid as…

Abstract

Purpose

In the application of hydrostatic double-layered porous journal bearings, misalignment of bearing systems is a major problem. On the other hand, the use of coupled-stress fluid as a lubricant is more practical in the present days. Furthermore, in case of porous bearing, neglecting slip effect and percolation effect of additives into the pores may lead to erroneous result. Hence, this paper aims to address the effect of journal misalignment and coupled-stress lubricant on the steady-state film pressure of the double-layered porous journal bearing with tangential velocity slip and percolation effect.

Design/methodology/approach

First, considering the tangential velocity slip, the most general modified Reynolds type equation has been derived for the film region and the governing equations for flow in the coarse and fine layers of porous medium, incorporating the percolation effect for a double-layered porous bearing. Here, considering the misalignment caused by shaft displacement. Film thickness expression established considering the effect of misalignment. Steady-state film pressures are obtained by solving modified Reynolds equation based on the coupled-stress lubrication theory. Effects of journal misalignment and coupled-stress lubricant on the pressure profiles in the film region are discussed and demonstrated in the graphical form.

Findings

In this paper, effects of journal misalignment and coupled-stress lubricant on the pressure profiles in the film region are obtained. In general, higher degree of misalignment gives higher steady-state pressure value in the film region, and this pressure increases due to increase in coupled-stress parameter up to a certain limit.

Originality/value

To the best of the author’s knowledge, there is no literature available, so far, that addresses the analysis of the steady-state pressure in the film region of a doubled–layered porous journal bearing under misaligned condition with coupled-stress lubricant. But in this paper all these points are included, which makes this article valuable in design purpose.

Details

Industrial Lubrication and Tribology, vol. 72 no. 3
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 11 April 2016

Abhishek Ghosh and Sisir Kumar Guha

Several researchers have observed that to satisfy modern day’s need, it is essential to enhance the characteristics of journal bearing, which is used in numerous applications…

Abstract

Purpose

Several researchers have observed that to satisfy modern day’s need, it is essential to enhance the characteristics of journal bearing, which is used in numerous applications. Moreover, the use of Newtonian fluid as a lubricant is diminishing day by day, and the use of Non-Newtonian fluids is coming more into picture. Furthermore, if turbo-machinery applications are taken into account, then it can be seen that journal bearings are used for high speed applications as well. Thus, neglecting turbulent conditions may lead to erroneous results. Hence, this paper aims to present focuses on studying the stability characteristics of finite hydrodynamic journal bearing under turbulent coupled-stress lubrication.

Design/methodology/approach

First, the governing equation relevant to the problem is generated. Then, the dynamic analysis is carried out by linear perturbation technique, leading to three perturbed equations, which are again discretized by finite difference method. Finally, these discretized equations are solved with the help of Gauss-Seidel Iteration technique with successive over relaxation scheme. Consequently, the film response coefficients and the stability parameters are evaluated at different parametric conditions.

Findings

It has been concluded from the study that with increase in value of the coupled-stress parameter, the stability of the journal may increase. Whereas, with increase in Reynolds number, the stability of the journal decreases. On the other hand, stability increases with increasing values of slenderness ratio.

Originality/value

Researches have been performed to study the dynamic characteristics of journal bearing with non-Newtonian fluid as the lubricant. But in the class of non-Newtonian lubricants, the use of coupled-stress fluid has not yet been properly investigated. So, an attempt has been made to perform the stability analysis of bearings with coupled-stress fluid as the advanced lubricant.

Details

Industrial Lubrication and Tribology, vol. 68 no. 3
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 13 December 2018

Shitendu Some and Sisir Kumar Guha

In the application of hydrostatic double-layered porous journal bearings, instability of bearing systems is a major problem. On the other hand, the use of non-Newtonian fluid as a…

Abstract

Purpose

In the application of hydrostatic double-layered porous journal bearings, instability of bearing systems is a major problem. On the other hand, the use of non-Newtonian fluid as a lubricant is more practical in the present days. Furthermore, in case of porous bearing, neglecting slip effect and percolation effect of additives into the pores may lead to erroneous result. Hence, this paper aims to present the linear stability analysis of finite hydrostatic double-layered porous journal bearings lubricated with coupled-stress lubricant with tangential velocity slip and percolation effect.

Design/methodology/approach

First, considering the tangential velocity slip, the most general modified Reynolds-type equation has been derived for the film region and the governing equations for flow in the coarse and fine layers of porous medium incorporating the percolation effect. A linearized first-order perturbation method has been applied to obtain the threshold of stability in terms of critical mass parameter. The effect of various parameters on the stability is investigated and represented in the form of graphs. Furthermore, a comparison between the stability of double- and single-layered porous journal bearings has been exhibited.

Findings

In this paper, threshold of stability has been obtained in terms of critical mass parameter. The effect of slip coefficient, percolation factor, coupled-stress parameter, eccentricity ratio and bearing feeding parameter on the stability has been found.

Originality/value

There is no literature available so far that addresses the analysis of the linear stability of externally pressurized double-layered porous journal bearings with slip flow, including the percolation effect under coupled-stress lubrication. But in this paper, all these points are included which made this paper valuable in design purpose.

Details

Industrial Lubrication and Tribology, vol. 71 no. 3
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 14 September 2015

M. Daliri and D. Jalali-Vahid

The purpose of this paper is to investigate squeezing and rotating motions between two rough parallel circular discs lubricated by piezo – viscous couple stress lubricant with…

Abstract

Purpose

The purpose of this paper is to investigate squeezing and rotating motions between two rough parallel circular discs lubricated by piezo – viscous couple stress lubricant with pressure-dependent viscosity variation.

Design/methodology/approach

Based upon the Stokes couple stress theory, Barus viscosity-pressure dependency relation and Christensen rough surfaces model, squeeze film characteristics between two rough parallel circular discs are obtained.

Findings

According to the results, it is found that, the combined effects of couple stresses and viscosity-pressure dependency increases squeeze film performance with respect to the classical Newtonian iso-viscous (constant viscosity) lubricant. However, increasing the rotational inertia parameter reduces squeeze film characteristics. On the other hand, depending on the structure of surface roughness, the squeeze film characteristics can be increased or decreased. Furthermore, results show that the surface roughness with circular pattern increases squeeze film characteristics, while the surface roughness with radial pattern will decrease it.

Originality/value

This paper is relatively original and describes the squeeze film characteristics between two parallel circular discs with viscosity-pressure dependency, rotational inertia, couple stresses and surface roughness effects.

Details

Industrial Lubrication and Tribology, vol. 67 no. 6
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 11 July 2019

A. Zeeshan, R. Ellahi, F. Mabood and F. Hussain

The purpose of this study is to examine the simultaneous effects of Hafnium particles and partially submerged metallic particles for the flow of bi-phase coupled stress fluid over…

Abstract

Purpose

The purpose of this study is to examine the simultaneous effects of Hafnium particles and partially submerged metallic particles for the flow of bi-phase coupled stress fluid over an inclined flat plane.

Design/methodology/approach

An unflinching free stream flow that stretches far from the surface of the plane with the possibility of containing some partially submerged metallic particles is considered. Innovative model has been proposed and designed using Runge–Kutta–Fehlberg method.

Findings

The findings show that the drag force resists the couple stress fluid, whereas the Newtonian flow is supported by increasing the velocity. For both types of flows, movement of the particle is retarded gradually against the drag force coefficient.

Originality/value

To the best of the authors’ knowledge, this model is reported for the first time.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 29 no. 8
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 15 June 2018

Maghsood Daliri and Nader Javani

The purpose of this paper is to investigate squeezing motion between conical plates lubricated by ferro-fluid couple stress lubricants considering convective fluid inertia effects.

Abstract

Purpose

The purpose of this paper is to investigate squeezing motion between conical plates lubricated by ferro-fluid couple stress lubricants considering convective fluid inertia effects.

Design/methodology/approach

Based upon the Stokes couple stress theory, Ferro-hydrodynamic model of Shliomis and averaged inertia principle, squeeze film characteristics between conical plates are obtained.

Findings

According to the results, it is found that couple stress ferro-fluid lubricants increase squeeze film characteristics. Moreover, with increasing convective fluid inertia parameter, the squeeze film characteristics are increased. In contrast, the dimensionless load-carrying capacity diminishes when half cone angle of conical plate increases.

Originality/value

This paper is relatively original and it describes the squeeze film characteristics between conical plates with ferro-fluid, convective inertia, couple stresses and half cone angle of conical plate effects.

Details

Industrial Lubrication and Tribology, vol. 70 no. 5
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 6 August 2010

Mohamed I.A. Othman and Kh. Lotfy

The purpose of this paper is to formulate a model of the equations of a two‐dimensional problem with the deformation of micropolar generalized thermoelastic medium with voids…

Abstract

Purpose

The purpose of this paper is to formulate a model of the equations of a two‐dimensional problem with the deformation of micropolar generalized thermoelastic medium with voids under the influence of various sources in the context of the Lord‐Shulman, Green‐Lindsay theories, as well as the classical dynamical coupled theory.

Design/methodology/approach

The normal mode analysis was used to obtain the exact expressions of the displacement components, force stress, coupled stress, change in volume fraction field and temperature distribution. Numerical results were given and illustrated graphically when the volume source was applied.

Findings

The presence of voids plays a significant role on all the physical quantities. The value of normal displacement and normal force stress increases while the temperature, tangential force stress and the couple stress increase and then decrease due to the presence of voids. The value of all the physical quantities converges to zero with increase in distance z.

Originality/value

Comparisons are made with the results predicted by the three theories in the presence and the absence of material constants due to voids.

Details

Multidiscipline Modeling in Materials and Structures, vol. 6 no. 2
Type: Research Article
ISSN: 1573-6105

Keywords

Article
Publication date: 13 November 2017

Nioosha Ghasemi Dolatsara, Maghsood Daliri and Moharram Shameli

The purpose of this paper is to investigate squeezing and rotating motions between two parallel annular discs lubricated by ferro-fluid couple stress lubricant in the presence of…

Abstract

Purpose

The purpose of this paper is to investigate squeezing and rotating motions between two parallel annular discs lubricated by ferro-fluid couple stress lubricant in the presence of a uniform magnetic field.

Design/methodology/approach

Based upon the Stokes couple stress theory and ferro-hydrodynamic model of Shliomis, squeeze film characteristics between two parallel annular discs are obtained.

Findings

According to the results, it is found that the combined effects of couple stress and ferro-fluid lubricant increase squeeze film performance with respect to the classical Newtonian lubricant. However, an increase in the rotational inertia parameter reduces squeeze film characteristics.

Originality/value

This paper is relatively original and describes the squeeze film characteristics between two parallel annular discs with rotational inertia, couple stress and ferro-fluid lubricant effects.

Details

Industrial Lubrication and Tribology, vol. 69 no. 6
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 21 June 2011

Mohamed I.A. Othman and Kh. Lotfy

The present paper aims to study the effect of rotation on the general model of the equations of generalized thermo‐microstretch for a homogeneous isotropic elastic half‐space…

Abstract

Purpose

The present paper aims to study the effect of rotation on the general model of the equations of generalized thermo‐microstretch for a homogeneous isotropic elastic half‐space solid whose surface is subjected to a thermal shock is considered. The problem is in the context of the generalized thermoelasticity Lord‐Şhulman's theory with one relaxation time, as well as the classical dynamical coupled theory.

Design/methodology/approach

The normal mode analysis is used to obtain the exact expressions.

Findings

For the displacement components, force stresses, temperature, couple stresses and microstress distribution.

Originality/value

The variations of the considered variables through the horizontal distance are illustrated graphically. Comparisons are made with the results in the presence and absence of rotation and in the presence and absence of microstretch constants between the two theories.

Details

Multidiscipline Modeling in Materials and Structures, vol. 7 no. 1
Type: Research Article
ISSN: 1573-6105

Keywords

Article
Publication date: 22 July 2019

Boualem Chetti and Wael Ahmed Crosby

The purpose of this paper is to present the effect of the preload on the static characteristics of three-lobe bearings lubricated with a fluid blended with high polymer additives…

100

Abstract

Purpose

The purpose of this paper is to present the effect of the preload on the static characteristics of three-lobe bearings lubricated with a fluid blended with high polymer additives modeled as a couple stress fluid.

Design/methodology/approach

Based on the micro-continuum theory, the modified Reynolds equation for couple stress fluids is solved using a finite difference method to obtain the distribution of the pressure, the load-carrying capacity, the attitude angle, the friction coefficient and the side leakage for various values of the couple stress parameter and the preload factor.

Findings

The results show that the presence of a couple stress in the lubricants improves the static characteristics of this type of bearing compared to those lubricated with Newtonian fluids for any value of the preload factor. Thus, it is found that the preload significantly affects the performance of the three-lobe journal bearing lubricated with a couple stress fluid or a Newtonian fluid. Moreover, the investigation showed that increasing the preload factor exhibits an increase in the load carrying capacity and the attitude angle, but it decreases the friction coefficient and the side leakage especially at a lower preload factor. Furthermore, using a couple stress fluid and a higher preload factor led to a significant rise in the load carrying capacity and a significant reduction in the friction coefficient.

Practical implications

This study helped improve the performance characteristics of the three-lobe journal bearing.

Originality/value

The presence of couple stress in the lubricants improves the static characteristics of this type of bearing compared to those lubricated with Newtonian fluids for any value of the preload factor. The usage of the couple stress fluid and the higher preload factor led to a significant rise in the load carrying capacity and a significant reduction in the friction coefficient.

Details

Industrial Lubrication and Tribology, vol. 71 no. 10
Type: Research Article
ISSN: 0036-8792

Keywords

1 – 10 of 405