Search results

1 – 10 of 255
Article
Publication date: 17 February 2022

Manish Kumar Ghodki

Electric motor heating during biomass recovery and its handling on conveyor is a serious concern for the motor performance. Thus, the purpose of this paper is to design and…

Abstract

Purpose

Electric motor heating during biomass recovery and its handling on conveyor is a serious concern for the motor performance. Thus, the purpose of this paper is to design and develop a hardware prototype of master–slave electric motors based biomass conveyor system to use the motors under normal operating conditions without overheating.

Design/methodology/approach

The hardware prototype of the system used master–slave electric motors for embedded controller operated robotic arm to automatically replace conveyor motors by one another. A mixed signal based embedded controller (C8051F226DK), fully compliant with IEEE 1149.1 specifications, was used to operate the entire system. A precise temperature measurement of motor with the help of negative temperature coefficient sensor was possible due to the utilization of industry standard temperature controller (N76E003AT20). Also, a pulse width modulation based speed control was achieved for master–slave motors of biomass conveyor.

Findings

As compared to conventional energy based mains supply, the system is self-sufficient to extract more energy from solar supply with an energy increase of 11.38%. With respect to conventional energy based \ of 47.31%, solar energy based higher energy saving of 52.69% was reported. Also, the work achieved higher temperature reduction of 34.26% of the motor as compared to previous cooling options.

Originality/value

The proposed technique is free from air, liquid and phase-changing material based cooling materials. As a consequence, the work prevents the wastage of these materials and does not cause the risk of health hazards. Also, the motors are used with their original dimensions without facing any leakage problems.

Details

Journal of Engineering, Design and Technology , vol. 22 no. 3
Type: Research Article
ISSN: 1726-0531

Keywords

Open Access
Article
Publication date: 28 February 2024

Hassan Th. Alassafi, Khalid S. Al-Gahtani, Abdulmohsen S. Almohsen and Abdullah M. Alsugair

Heating, ventilating, air-conditioning and cooling (HVAC) systems are crucial in daily health-care facility services. Design-related defects can lead to maintenance issues…

Abstract

Purpose

Heating, ventilating, air-conditioning and cooling (HVAC) systems are crucial in daily health-care facility services. Design-related defects can lead to maintenance issues, causing service disruptions and cost overruns. These defects can be avoided if a link between the early design stages and maintenance feedback is established. This study aims to use experts’ experience in HVAC maintenance in health-care facilities to list and evaluate the risk of each maintenance issue caused by a design defect, supported by the literature.

Design/methodology/approach

Following semistructured interviews with experts, 41 maintenance issues were identified as the most encountered issues. Subsequently, a survey was conducted in which 44 participants evaluated the probability and impact of each design-caused issue.

Findings

Chillers were identified as the HVAC components most prone to design defects and cost impact. However, air distribution ducts and air handling units are the most critical HVAC components for maintaining healthy conditions inside health-care facilities.

Research limitations/implications

The unavailability of comprehensive data on the cost impacts of all design-related defects from multiple health-care facilities limits the ability of HVAC designers to furnish case studies and quantitative approaches.

Originality/value

This study helps HVAC designers acquire prior knowledge of decisions that may have led to unnecessary and avoidable maintenance. These design-related maintenance issues may cause unfavorable health and cost consequences.

Article
Publication date: 20 February 2024

Ebrahem A. Algehyne

In recent times, there has been a growing interest in buoyancy-induced heat transfer within confined enclosures due to its frequent occurrence in heat transfer processes across…

27

Abstract

Purpose

In recent times, there has been a growing interest in buoyancy-induced heat transfer within confined enclosures due to its frequent occurrence in heat transfer processes across diverse engineering disciplines, including electronic cooling, solar technologies, nuclear reactor systems, heat exchangers and energy storage systems. Moreover, the reduction of entropy generation holds significant importance in engineering applications, as it contributes to enhancing thermal system performance. This study, a numerical investigation, aims to analyze entropy generation and natural convection flow in an inclined square enclosure filled with Ag–MgO/water and Ag–TiO2/water hybrid nanofluids under the influence of a magnetic field. The enclosure features heated slits along its bottom and left walls. Following the Boussinesq approximation, the convective flow arises from a horizontal temperature difference between the partially heated walls and the cold right wall.

Design/methodology/approach

The governing equations for laminar unsteady natural convection flow in a Newtonian, incompressible mixture is solved using a Marker-and-Cell-based finite difference method within a customized MATLAB code. The hybrid nanofluid’s effective thermal conductivity and viscosity are determined using spherical nanoparticle correlations.

Findings

The numerical investigations cover various parameters, including nanoparticle volume concentration, Hartmann number, Rayleigh number, heat source/sink effects and inclination angle. As the Hartmann and Rayleigh numbers increase, there is a significant enhancement in entropy generation. The average Nusselt number experiences a substantial increase at extremely high values of the Rayleigh number and inclination.

Practical implications

This numerical investigation explores advanced applications involving various combinations of influential parameters, different nanoparticles, enclosure inclinations and improved designs. The goal is to control fluid flow and enhance heat transfer rates to meet the demands of the Fourth Industrial Revolution.

Originality/value

In a 90° tilted enclosure, the addition of 5% hybrid nanoparticles to the base fluid resulted in a 17.139% increase in the heat transfer rate for Ag–MgO nanoparticles and a 16.4185% increase for Ag–TiO2 nanoparticles compared to the base fluid. It is observed that a 5% nanoparticle volume fraction results in an increased heat transfer rate, influenced by variations in both the Darcy and Rayleigh numbers. The study demonstrates that the Ag–MgO hybrid nanofluid exhibits superior heat transfer and fluid transport performance compared to the Ag–TiO2 hybrid nanofluid. The simulations pertain to the use of hybrid magnetic nanofluids in fuel cells, solar cavity receivers and the processing of electromagnetic nanomaterials in enclosed environments.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 34 no. 4
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 21 November 2023

Nimasha Dilukshi Hulathdoowage, Gayani Karunasena, Nilupa Udawatta and Chunlu Liu

Over the years, the significance of retrofitting has gained much attention with the unveiling of its different applications, such as energy retrofit and deep retrofit, to enhance…

Abstract

Purpose

Over the years, the significance of retrofitting has gained much attention with the unveiling of its different applications, such as energy retrofit and deep retrofit, to enhance the climate-resilience of buildings. However, no single study comprehensively assesses the climate-resilience of retrofitting. The purpose of this study is to address this gap via a systematic literature review.

Design/methodology/approach

Quality journal studies were selected using the PRISMA method and analysed manually and using scientometrics. Three dimensions of climate-resilience, such as robustness, withstanding and recovery, were used to evaluate the contribution of retrofit measures for achieving climate-resilient houses across four climate zones: tropical, arid, temperate and cold.

Findings

Most passive measures can enhance the robustness of residential buildings but cannot verify for withstanding against immediate shocks and timely recovery. However, some passive measures, such as night-time ventilation, show excellent performance over all four climate zones. Active measures such as heating, ventilation and air conditioning and mechanical ventilation with heat recovery, can ensure climate-resilience in all three dimensions in the short-term but contribute to greenhouse gas emissions, further exacerbating the long-term climate. Integrating renewable energy sources can defeat this issue. Thus, all three retrofit strategies should appropriately be adopted together to achieve climate-resilient houses.

Research limitations/implications

Since the research is limited to secondary data, retrofit measures recommended in this research should be further investigated before application.

Originality/value

This review contributes to the knowledge domain of retrofitting by assessing the contribution of different retrofit measures to climate-resilience.

Details

International Journal of Disaster Resilience in the Built Environment, vol. 15 no. 3
Type: Research Article
ISSN: 1759-5908

Keywords

Article
Publication date: 2 April 2024

Jhumana Akter, Mobasshira Islam and Shuvo Dip Datta

Determining the suitable material and accurate thickness of the thermal insulation layer used in exterior walls during the design phase of a building can be challenging. This…

Abstract

Purpose

Determining the suitable material and accurate thickness of the thermal insulation layer used in exterior walls during the design phase of a building can be challenging. This study aims to determine suitable material and optimum thickness for the insulation layer considering both operational and embodied factors by a comprehensive assessment of the energy, economic and environmental (3E) parameters.

Design/methodology/approach

First, the energy model of an existing building was created by using Autodesk Revit software according to the as-built floor layout to evaluate the impact of five alternative insulating materials in varying thickness values. Second, using the results derived from the model, a thorough evaluation was conducted to ascertain the optimal insulation material and thickness through individual analysis of 3E factors, followed by a comprehensive analysis considering the three aforementioned factors simultaneously.

Findings

The findings indicated that polyurethane with 13 cm thickness, rockwool with 10 cm thickness and EPS with 20 cm thickness were the best states based on energy consumption, cost and environmental footprint, respectively. After completing the 3E investigation, the 15-cm-thick mineral wool insulation was presented as the ideal state.

Practical implications

This study explores how suitable material and thickness of insulating material can be determined in advance during the design phase of a building, which is a lot more accurate and cost-effective than applying insulating materials by assumed thickness in the construction phase.

Originality/value

To the best of the authors’ knowledge, this paper is unique in investigating the advantages of using thermally insulating materials in the context of a mosque structure, taking into account its distinctive attributes that deviate from those of typical buildings. Furthermore, there has been no prior analysis of the cost and sustainability implications of these materials concerning the characteristics of subtropical monsoon climate.

Details

World Journal of Engineering, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1708-5284

Keywords

Article
Publication date: 14 March 2024

Weiqiang Xue, Jingfeng Shen and Yawen Fan

The transient loads on the spherical hybrid sliding bearings (SHSBs) rotor system during the process of accelerating to stable speed are related to time, which exhibits a complex…

Abstract

Purpose

The transient loads on the spherical hybrid sliding bearings (SHSBs) rotor system during the process of accelerating to stable speed are related to time, which exhibits a complex transient response of the rotor dynamics. The current study of the shaft center trajectory of the SHSBs rotor system is based on the assumption that the rotational speed is constant, which cannot truly reflect the trajectory of the rotor during operation. The purpose of this paper truly reflects the trajectory of the rotor and further investigates the stability of the rotor system during acceleration of SHSBs.

Design/methodology/approach

The model for accelerated rotor dynamics of SHSBs is established. The model is efficiently solved based on the fourth-order Runge–Kutta method and then to obtain the shaft center trajectory of the rotor during acceleration.

Findings

Results show that the bearing should choose larger angular acceleration in the acceleration process from startup to the working speed; rotor system is more stable. With the target rotational speed increasing, the changes in the shaft trajectory of the acceleration process are becoming more complex, resulting in more time required for the bearing stability. When considering the stability of the rotor system during acceleration, the rotor equations of motion provide a feasible solution for the simulation of bearing rotor system.

Originality/value

The study can simulate the running stability of the shaft system from startup to the working speed in this process, which provides theoretical guidance for the stability of the rotor system of the SHSBs in the acceleration process.

Details

Industrial Lubrication and Tribology, vol. 76 no. 3
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 30 April 2024

Dongju Chen, Yupeng Zhao, Kun Sun, Ri Pan and Jinwei Fan

To enhance the performance of hydrostatic bearings, graphene serves as a lubricant additive. Using the high thermal conductivity of graphene, the purpose of this study is to focus…

Abstract

Purpose

To enhance the performance of hydrostatic bearings, graphene serves as a lubricant additive. Using the high thermal conductivity of graphene, the purpose of this study is to focus on the impact of graphene nano-lubricating oil hydrostatic bearing temperature rise at various speeds and eccentricities.

Design/methodology/approach

The thermal conductivity of graphene nano-lubricating oil was calculated by molecular dynamics method and based on the viscosity–temperature effect, the coupled heat transfer finite element model of hydrostatic bearing was established; temperature rise of pure lubricating oil and graphene nano-lubricating oil hydrostatic bearing were analysed at different speed and eccentricity based on computational fluid dynamics method.

Findings

With the increase of speed and eccentricity, the temperature rise of 0.2% graphene nano-lubricating oil bearings is lower than that of pure lubricating oil bearings; in addition with the increase of graphene mass fraction, the temperature rise of graphene nano-lubricating oil bearings is always higher than that of pure lubricating oil bearings, and the higher the speed, the more obvious the phenomenon.

Originality/value

The effects of graphene as a lubricant additive on the thermal conductivity of nano-lubricating oil and the variation of the temperature rise of graphene nano-lubricating oil bearings compared to pure lubricating oil bearings were analysed by combining micro and macro methods.

Peer review

The peer review history for this article is available at: https://publons.com/publon/10.1108/ILT-12-2023-0388

Details

Industrial Lubrication and Tribology, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 4 April 2024

Dong Li, Yu Zhou, Zhan-Wei Cao, Xin Chen and Jia-Peng Dai

This paper aims to establish a lattice Boltzmann (LB) method for solid-liquid phase transition (SLPT) from the pore scale to the representative elementary volume (REV) scale. By…

Abstract

Purpose

This paper aims to establish a lattice Boltzmann (LB) method for solid-liquid phase transition (SLPT) from the pore scale to the representative elementary volume (REV) scale. By applying this method, detailed information about heat transfer and phase change processes within the pores can be obtained, while also enabling the calculation of larger-scale SLPT problems, such as shell-and-tube phase change heat storage systems.

Design/methodology/approach

Three-dimensional (3D) pore-scale enthalpy-based LB model is developed. The computational input parameters at the REV scale are derived from calculations at the pore scale, ensuring consistency between the two scales. The approaches to reconstruct the 3D porous structure and determine the REV of metal foam were discussed. The implementation of conjugate heat transfer between the solid matrix and the solid−liquid phase change material (SLPCM) for the proposed model is developed. A simple REV-scale LB model under the local thermal nonequilibrium condition is presented. The method of bridging the gap between the pore-scale and REV-scale enthalpy-based LB models by the REV is given.

Findings

This coupled method facilitates detailed simulations of flow, heat transfer and phase change within pores. The approach holds promise for multiscale calculations in latent heat storage devices with porous structures. The SLPT of the heat sinks for electronic device thermal control was simulated as a case, demonstrating the efficiency of the present models in designing and optimizing SLPT devices.

Originality/value

A coupled pore-scale and REV-scale LB method as a numerical tool for investigating phase change in porous materials was developed. This innovative approach allows for the capture of details within pores while addressing computations over a large domain. The LB method for simulating SLPT from the pore scale to the REV scale was given. The proposed method addresses the conjugate heat transfer between the SLPCM and the solid matrix in the enthalpy-based LB model.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0961-5539

Keywords

Open Access
Article
Publication date: 5 April 2024

Kai Rüdele, Matthias Wolf and Christian Ramsauer

Improving productivity and efficiency has always been crucial for industrial companies to remain competitive. In recent years, the topic of environmental impact has become…

Abstract

Purpose

Improving productivity and efficiency has always been crucial for industrial companies to remain competitive. In recent years, the topic of environmental impact has become increasingly important. Published research indicates that environmental and economic goals can enforce or rival each other. However, few papers have been published that address the interaction and integration of these two goals.

Design/methodology/approach

In this paper, we identify both, synergies and trade-offs based on a systematic review incorporating 66 publications issued between 1992 and 2021. We analyze, quantify and cluster examples of conjunctions of ecological and economic measures and thereby develop a framework for the combined improvement of performance and environmental compatibility.

Findings

Our findings indicate an increased significance of a combined consideration of these two dimensions of sustainability. We found that cases where enforcing synergies between economic and ecological effects were identified are by far more frequent than reports on trade-offs. For the individual categories, cost savings are uniformly considered as the most important economic aspect while, energy savings appear to be marginally more relevant than waste reduction in terms of environmental aspects.

Originality/value

No previous literature review provides a comparable graphical treatment of synergies and trade-offs between cost savings and ecological effects. For the first time, identified measures were classified in a 3 × 3 table considering type and principle.

Details

Management of Environmental Quality: An International Journal, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1477-7835

Keywords

Article
Publication date: 3 April 2024

Nirmal K. Manna, Abhinav Saha, Nirmalendu Biswas and Koushik Ghosh

This paper aims to investigate the thermal performance of equivalent square and circular thermal systems and compare the heat transport and irreversibility of magnetohydrodynamic…

Abstract

Purpose

This paper aims to investigate the thermal performance of equivalent square and circular thermal systems and compare the heat transport and irreversibility of magnetohydrodynamic (MHD) nanofluid flow within these systems.

Design/methodology/approach

The research uses a constraint-based approach to analyze the impact of geometric shapes on heat transfer and irreversibility. Two equivalent systems, a square cavity and a circular cavity, are examined, considering identical heating/cooling lengths and fluid flow volume. The analysis includes parameters such as magnetic field strength, nanoparticle concentration and accompanying irreversibility.

Findings

This study reveals that circular geometry outperforms square geometry in terms of heat flow, fluid flow and heat transfer. The equivalent circular thermal system is more efficient, with heat transfer enhancements of approximately 17.7%. The corresponding irreversibility production rate is also higher, which is up to 17.6%. The total irreversibility production increases with Ra and decreases with a rise in Ha. However, the effect of magnetic field orientation (γ) on total EG is minor.

Research limitations/implications

Further research can explore additional geometric shapes, orientations and boundary conditions to expand the understanding of thermal performance in different configurations. Experimental validation can also complement the numerical analysis presented in this study.

Originality/value

This research introduces a constraint-based approach for evaluating heat transport and irreversibility in MHD nanofluid flow within square and circular thermal systems. The comparison of equivalent geometries and the consideration of constraint-based analysis contribute to the originality and value of this work. The findings provide insights for designing optimal thermal systems and advancing MHD nanofluid flow control mechanisms, offering potential for improved efficiency in various applications.

Graphical Abstract

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0961-5539

Keywords

1 – 10 of 255