Search results

1 – 10 of over 6000
Article
Publication date: 28 October 2014

George Pichurov, Radostina Angelova, Iskra Simova, Iosu Rodrigo and Peter Stankov

The purpose of this paper is to integrate a thermophysiological human body model into a CFD simulation to predict the dry and latent body heat loss, the clothing, skin and core…

Abstract

Purpose

The purpose of this paper is to integrate a thermophysiological human body model into a CFD simulation to predict the dry and latent body heat loss, the clothing, skin and core temperature, skin wettedness and periphery blood flow distribution. The integration of the model allows to generate more realistic boundary conditions for the CFD simulation and allows to predict the room distribution of temperature and humidity originating from the occupants.

Design/methodology/approach

A two-dimensional thermophysiological body model is integrated into a CFD simulation to predict the interaction between the human body and room environment. Parameters varied were clothing insulation and metabolic activity and supply air temperature. The body dry and latent heat loss, skin wettedness, skin and core temperatures were predicted together with the room air temperature and humidity.

Findings

Clothing and metabolic activity were found to have different level of impact on the dry and latent heat loss. Heat loss was more strongly affected by changes in the metabolic rate than in the clothing insulation. Latent heat loss was found to exhibit much larger variations compared to dry heat loss due to the high latent heat potential of water.

Originality/value

Unlike similar studies featuring naked human body, clothing characteristics like sensible resistance and vapor permeability were accommodated into the present study. A method to ensure numerical stability of the integrated simulation was developed and implemented to produce robust and reliable simulation performance.

Details

International Journal of Clothing Science and Technology, vol. 26 no. 6
Type: Research Article
ISSN: 0955-6222

Keywords

Article
Publication date: 1 October 2003

K.F. Fong, V.I. Hanby and T.T. Chow

Energy management in existing building services installations is an essential focus of contemporary facilities management. The subway company that is one of the major utilities…

1019

Abstract

Energy management in existing building services installations is an essential focus of contemporary facilities management. The subway company that is one of the major utilities services in Hong Kong Special Administrative Region has considered better energy management schemes in its subway stations to reduce the running cost. In the past few years some feasible measures in the mechanical ventilation and air conditioning (MVAC) systems were implemented, however the engineering decisions were supported by trial‐and‐error or imprecise estimation. Improvement to this process would be possible if numerical optimization methods were to be used. An evolutionary algorithm coupled with an external plant simulation programme was applied to determine the optimum conditions of the essential parameters of the MVAC systems. For the centralized MVAC systems under study, the developed optimization and simulation model was found useful in appraising the energy management opportunities for effective design and facilities management.

Details

Facilities, vol. 21 no. 10
Type: Research Article
ISSN: 0263-2772

Keywords

Article
Publication date: 5 April 2022

Yuquan Ni, Nannan Sun, Guixiang Zhu, Shujie Liu, Jun Liu and Guangneng Dong

This paper aims to study different morphology Cu6Sn5 effect on Babbitt alloy tribological properties.

Abstract

Purpose

This paper aims to study different morphology Cu6Sn5 effect on Babbitt alloy tribological properties.

Design/methodology/approach

Different morphology Cu6Sn5 of Babbitt was conducted by different cooling modes. Bare Babbitt was marked by Babbitt-0, Babbitt modified by first cooling mode (marked by Babbitt-1) and Babbitt modified by second cooling mode (marked by Babbitt-2). The microstructure and microhardness of specimens were tested. Then, tribological properties of Babbitt-0, Babbitt-1 and Babbitt-2 were performed by reciprocating mode under lubricated condition.

Findings

The results showed that shape Cu6Sn5 of Babbitt was changed from mixed needle and star-like shape to short rod-like or granular shape. The microhardness of Babbitt-1 was highest than that of Babbitt-0 and Babbitt-2. Compared with Babbitt-0 and Babbitt-2, tribological properties of Babbitt-1 were better under lubricated condition due to short rod-like and sparse distribution of Cu6Sn5. Moreover, the simulation result of strain and stress of Babbitt-1 was lowest than that of Babbitt-0 and Babbitt-2.

Originality/value

Different morphology (shape and distributed) of Cu6Sn5 was obtained by different cooling modes. Modulated different forms of Cu6Sn5 around SnSb was beneficial to improve Babbitt alloy tribological properties.

Details

Industrial Lubrication and Tribology, vol. 74 no. 5
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 6 July 2018

Ismail Arroub, Ahmed Bahlaoui, Abdelghani Raji, Mohammed Hasnaoui and Mohamed Naïmi

The purpose of this paper is to investigate numerically mixed convection of Al2O3-water nanofluids flowing through a horizontal ventilated cavity heated from below by a…

Abstract

Purpose

The purpose of this paper is to investigate numerically mixed convection of Al2O3-water nanofluids flowing through a horizontal ventilated cavity heated from below by a temperature varying sinusoidally along its lower wall. The simulations focus on the effects of different key parameters, such as Reynolds number (200 ≤ Re ≤ 5,000), nanoparticles’ concentration (0 ≤ ϕ ≤ 0.1) and phase shift of the heating temperature (0 ≤ γ ≤ π), on flow and thermal patterns and heat transfer performances.

Design/methodology/approach

The Navier–Stokes equations describing the nanofluid flow were discretized using a finite difference technique. The vorticity and energy equations were solved by the alternating direction implicit method. Values of the stream function were obtained by using the point successive over-relaxation method.

Findings

The simulations were performed for two modes of imposed external flow (injection and suction). The main findings are that the dynamical and thermal fields are affected by the parameters Re, ϕ, γ and the applied ventilation mode; the addition of nanoparticles leads to an improvement of heat transfer rate and an increase of mean temperature inside the enclosure; the heat exchange performance and the better cooling are more pronounced in suction mode; the phase shift of the heating temperature may lead to periodic solutions for weaker values of Re and contributes to an increase or a decrease of heat transfer depending on the value of ϕ and the convection regime.

Originality/value

To the best of the authors’ knowledge, the problem of mixed convection of a nanofluid inside a vented cavity using the injection or suction technics and submitted to non-uniform heating conditions has not been treated so far.

Details

Engineering Computations, vol. 35 no. 4
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 3 March 2022

Changpeng Chen, Zhongxu Xiao, Gang Xue, Hailong Liao and Haihong Zhu

High temperature gradient induces high residual stress, producing an important effect on the part manufacturing during laser powder bed fusion (LPBF). The purpose of this study is…

Abstract

Purpose

High temperature gradient induces high residual stress, producing an important effect on the part manufacturing during laser powder bed fusion (LPBF). The purpose of this study is to investigate the effect of the molten pool mode on the thermal stress of Ti-6Al-4V alloy during different deposition processes.

Design/methodology/approach

A coupled thermal-mechanical finite element model was built. The developed model was validated by comparing the numerical results with the experimental data in the maximum molten pool temperature, the molten pool dimension and the residual stress described in the previous work.

Findings

For the single-track process, the keyhole mode caused an increase in both the maximum stress and the high-stress area compared with the conduction mode. For the multitrack process, a lower tensile stress around the scanning track and a higher compressive stress below the scanning track were found in the keyhole mode. For the multilayer process, the stress along the scanning direction at the middle of the part changed from tensile stress to compressive stress with the increase in the deposition layer number. As the powder layer number increased, the stress along the scanning direction near the top surface of the part decreased while the stress along the deposition direction obviously increased, indicating that the stress along the deposition direction became the dominant stress. The keyhole mode can reduce the residual stress near the top of the part, and the conduction mode was more likely to produce a low residual stress near the bottom of the part.

Originality/value

The results provide a systematic understanding of thermal stress during the LPBF process.

Details

Rapid Prototyping Journal, vol. 28 no. 7
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 28 September 2020

Hery Sonawan, Evi Sofia and Arief Ramadhan

The paper aims to apply Buckingham Pi dimensional analysis method for assessing direct evaporative cooler performance with a cooling pad made of banana midrib and ramie fiber. The…

Abstract

Purpose

The paper aims to apply Buckingham Pi dimensional analysis method for assessing direct evaporative cooler performance with a cooling pad made of banana midrib and ramie fiber. The saturation efficiency acted as the indicator performance of the evaporative cooler.

Design/methodology/approach

The paper describes an experimental study of the direct evaporative cooler with a cooling pad made of banana midrib and rami fiber. There were six parameters in the experiment: absorbed water as a dependent variable was affected by independent parameters such as air velocity and temperature, cooling pad cross-section area and thickness. Based on these variables, we arranged three dimensionless numbers and their correlation.

Findings

The paper provides three calculated dimensionless numbers plotted on a curve with a specific correlation. The curve trends for 30 mm and 50 mm pad thickness were almost similar. The range of Reynolds number for 10 mm pad was narrower than other pad thicknesses. The thicker the cooling pad, the more extensive was the calculated Reynolds number range. A new curve exhibited the relationship between the evaporation rate with the μA/t number. The broader cooling pad cross-section, the thinner pad thickness, and the lower pad temperature were factors that increased the evaporation rate, even though the increase was less significant.

Originality/value

A new material in cooling pad from banana midrib fiber was tested and compared to ramie fiber and conventional cooling pad.

Details

Smart and Sustainable Built Environment, vol. 11 no. 3
Type: Research Article
ISSN: 2046-6099

Keywords

Book part
Publication date: 5 June 2023

Sonali A. Deshmukh, Praveen Barmavatu, Mihir Kumar Das, Bukke Kiran Naik, Vineet Singh Sikarwar, Alety Shivakrishna, Radhamanohar Aepuru and Rathod Subash

This study has covered many types of solar-powered air-conditioning systems that may be used as an alternative to traditional electrically powered air-conditioning systems in…

Abstract

This study has covered many types of solar-powered air-conditioning systems that may be used as an alternative to traditional electrically powered air-conditioning systems in order to reduce energy usage. Solar adsorption air cooling is a great alternative to traditional vapor compression air-conditioning. Solar adsorption has several advantages over traditional vapor-compression systems, including being a green cooling technology which uses solar energy to drive the cycle, using pure water as an eco-friendly HFC-free refrigerant, and being mechanically simple with only the magnetic valves as moving parts. Several advancements and breakthroughs have been developed in the area of solar adsorption air-conditioners during the previous decade. However, further study is required before this technology can be put into practise. As a result, this book chapter highlights current research that adds to the understanding of solar adsorption air-conditioning technologies, with a focus on practical research. These systems have the potential to become the next iteration of air-conditioning systems, with the benefit of lowering energy usage while using plentiful solar energy supplies to supply the cooling demand.

Article
Publication date: 3 October 2012

Abdeen Mustafa Omer

The purpose of this paper is to describe how, in the recent attempts to stimulate alternative energy sources for heating and cooling of buildings, emphasis has been put on…

Abstract

Purpose

The purpose of this paper is to describe how, in the recent attempts to stimulate alternative energy sources for heating and cooling of buildings, emphasis has been put on utilisation of the ambient energy from ground source heat pump systems (GSHPs) and other renewable energy sources.

Design/methodology/approach

Exploitation of renewable energy sources and particularly ground heat in buildings can significantly contribute towards reducing dependency on fossil fuels. This paper highlights the potential energy saving that could be achieved through use of ground energy source. It also focuses on the optimisation and improvement of the operation conditions of the heat cycles and performances of the direct expansion (DX) GSHP.

Findings

It is concluded that the direct expansion of GSHP are extendable to more comprehensive applications combined with the ground heat exchanger in foundation piles and the seasonal thermal energy storage from solar thermal collectors.

Originality/value

The paper highlights the energy problem and the possible saving that can be achieved through the use of the GSHP systems and discusses the principle of the ground source energy, varieties of GSHPs, and various developments.

Details

World Journal of Science, Technology and Sustainable Development, vol. 9 no. 4
Type: Research Article
ISSN: 2042-5945

Keywords

Article
Publication date: 10 November 2023

Varun Sabu Sam, M.S. Adarsh, Garry Robson Lyngdoh, Garry Wegara K. Marak, N. Anand, Khalifa Al-Jabri and Diana Andrushia

The capability of steel columns to support their design loads is highly affected by the time of exposure and temperature magnitude, which causes deterioration of mechanical…

Abstract

Purpose

The capability of steel columns to support their design loads is highly affected by the time of exposure and temperature magnitude, which causes deterioration of mechanical properties of steel under fire conditions. It is known that structural steel loses strength and stiffness as temperature increases, particularly above 400 °C. The duration of time in which steel is exposed to high temperatures also has an impact on how much strength it loses. The time-dependent response of steel is critical when estimating load carrying capacity of steel columns exposed to fire. Thus, investigating the structural response of cold-formed steel (CFS) columns is gaining more interest due to the nature of such structural elements.

Design/methodology/approach

In this study, experiments were conducted on two CFS configurations: back-to-back (B-B) channel and toe-to-toe (T-T) channel sections. All CFS column specimens were exposed to different temperatures following the standard fire curve and cooled by air or water. A total of 14 tests were conducted to evaluate the capacity of the CFS sections. The axial resistance and yield deformation were noted for both section types at elevated temperatures. The CFS column sections were modelled to simulate the section's behaviour under various temperature exposures using the general-purpose finite element (FE) program ABAQUS. The results from FE modelling agreed well with the experimental results. Ultimate load of experiment and finite element model (FEM) are compared with each other. The difference in percentage and ratio between both are presented.

Findings

The results showed that B-B configuration showed better performance for all the investigated parameters than T-T sections. A noticeable loss in the ultimate strength of 34.5 and 65.6% was observed at 90 min (986℃) for B-B specimens cooled using air and water, respectively. However, the reduction was 29.9 and 46% in the T-T configuration, respectively.

Originality/value

This research paper focusses on assessing the buckling strength of heated CFS sections to analyse the mode of failure of CFS sections with B-B and T-T design configurations under the effect of elevated temperature.

Details

Journal of Structural Fire Engineering, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2040-2317

Keywords

Article
Publication date: 7 June 2019

Reza Dadsetani, Ghanbar Ali Sheikhzadeh, Mohammad Reza Hajmohammadi and Mohammad Reza Safaei

Electronic components’ efficiency is the cornerstone of technology progress. The cooling process used for electronic components plays a main role in their performance. Embedded…

Abstract

Purpose

Electronic components’ efficiency is the cornerstone of technology progress. The cooling process used for electronic components plays a main role in their performance. Embedded high-conductivity material and provided microchannel heat sink are two common cooling methods. The former is expensive to implement while the latter needs micro-pump, which consumes energy to circulate the flow. The aim of this study is providing a new configuration and method for improving the performance of electronic components.

Design/methodology/approach

To manage these challenges and improve the cooling efficiency, a novel method named Hybrid is presented here. Each method's performance has been investigated, and the results are widely compared with others. Considering the micro-pump power, the supply of the microchannel flow and the thermal conductivity ratio (thermal conductivity ratio is defined as the ratio of thermal conductivity of high thermal conductivity material to the thermal conductivity of base solid), the maximum disk temperature of each method was evaluated and compared to others.

Findings

The results indicated that the Hybrid method can reduce the maximum disk temperature up to 90 per cent compared to the embedded high thermal conductivity at the same thermal conductivity ratio. Moreover, the Hybrid method further reduces the maximum disk temperature up to 75 per cent compared to the microchannel, at equivalent power consumption.

Originality/value

The information in this research is presented in such a way that designers can choose the desired composition, the limited amount of consumed energy and the high temperature of the component. According to the study of radial-hybrid configuration, the different ratio of microchannel and materials with a high thermal conductivity coefficient in the constant cooling volume was investigated. The goal of the investigation was to decrease the maximum temperature of a plate on constant energy consumption. This aim has been obtained in the radial-hybrid configuration.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 30 no. 6
Type: Research Article
ISSN: 0961-5539

Keywords

1 – 10 of over 6000