Search results

1 – 10 of over 1000
Article
Publication date: 25 January 2023

Yongliang Wang

This study aimed to overcome the challenging issues involved in providing high-precision eigensolutions. The accurate prediction of the buckling load bearing capacity under…

Abstract

Purpose

This study aimed to overcome the challenging issues involved in providing high-precision eigensolutions. The accurate prediction of the buckling load bearing capacity under different crack damage locations, sizes and numbers, and analysing the influence mechanism of crack damage on buckling instability have become the needs of theoretical research and engineering practice. Accordingly, a finite element method was developed and applied to solve the elastic buckling load and buckling mode of curved beams with crack damage. However, the accuracy of the solution depends on the quality of mesh, and the solution inevitably introduces errors due to mesh. Therefore, the adaptive mesh refinement method can effectively optimise the mesh distribution and obtain high-precision solutions.

Design/methodology/approach

For the elastic buckling of circular curved beams with cracks, the section damage defect analogy scheme of a circular arc curved beam crack was established to simulate the crack size (depth), position and number. The h-version finite element mesh adaptive analysis method of the variable section Euler–Bernoulli beam was introduced to solve the elastic buckling problem of circular arc curved beams with crack damage. The optimised mesh and high-precision buckling load and buckling mode solutions satisfying the preset error tolerance were obtained.

Findings

The results of testing typical examples show that (1) the established section damage defect analogy scheme of circular arc curved beam crack can effectively realise the simulation of crack size (depth), position and number. The solution strictly satisfies the preset error tolerance; (2) the non-uniform mesh refinement in the algorithm can be adapted to solve the arbitrary order frequencies and modes of cracked cylindrical shells under the conditions of different ring wave numbers, crack positions and crack depths; and (3) the change in the buckling mode caused by crack damage is applicable to the study of elastic buckling under various curved beam angles and crack damage distribution conditions.

Originality/value

This study can provide a novel strategy for the adaptive mesh refinement for finite element analysis of elastic buckling of circular arc curved beams with crack damage. The adaptive mesh refinement method established in this study is fundamentally different from the conventional finite element method which employs the user experience to densify the meshes near the crack. It can automatically and flexibly generate a set of optimised local meshes by iteratively dividing the fine mesh near the crack, which can ensure the high accuracy of the buckling loads and modes. The micro-crack in curved beams is also characterised by weakening the cross-sectional stiffness to realise the characterisation of locations, depths and distributions of multiple crack damage, which can effectively analyse the disturbance behaviour of different forms of micro-cracks on the dynamic behaviour of beams.

Article
Publication date: 2 October 2018

Anup Pydah and Aditya Sabale

There exists a clear paucity of models for curved bi-directional functionally graded (BDFG) beams wherein the material properties vary along the axis and thickness of the beam

Abstract

Purpose

There exists a clear paucity of models for curved bi-directional functionally graded (BDFG) beams wherein the material properties vary along the axis and thickness of the beam simultaneously; such structures may help fulfil practical design requirements of the future and improve structural efficiency. In this context, the purpose of this paper is to extend the analytical model developed earlier to thick BDFG circular beams by using first-order shear deformation theory which allows for a non-zero shear strain distribution through the thickness of the beam.

Design/methodology/approach

Smooth functional variations of the material properties have been assumed along the axis and thickness of the beam simultaneously. The governing equations developed have been solved analytically for some representative determinate circular beams. In order to ascertain the effects of shear deformation in these structures, the total strain energy has been decomposed into its bending and shear components and the effects of the beam thickness and the arch angle on the shear energy component have been studied.

Findings

Closed-form exact solutions involving through-the-thickness integrals carried out numerically are presented for the bending of circular beams under the action of a variety of concentrated/distributed loads.

Originality/value

The results clearly indicate the importance of capturing shear deformation in thick BDFG beams and demonstrate the capability of tuning the response of these beams to fit a wide variety of structural requirements.

Details

Multidiscipline Modeling in Materials and Structures, vol. 15 no. 1
Type: Research Article
ISSN: 1573-6105

Keywords

Article
Publication date: 22 December 2022

Yongliang Wang

In this paper, a superconvergent patch recovery method is proposed for superconvergent solutions of modes in the finite element post-processing stage of variable geometrical…

Abstract

Purpose

In this paper, a superconvergent patch recovery method is proposed for superconvergent solutions of modes in the finite element post-processing stage of variable geometrical Timoshenko beams. The proposed superconvergent patch recovery method improves the solution speed and accuracy of the finite element analysis of a curved beam. The free vibration and natural frequency of the beam were considered for studying forced vibrations and structural resonance. Beam vibration mode analysis was performed for high-precision vibration mode solutions and frequency values. The proposed method can be used to compute beam vibration modes of beams with different shapes and boundary conditions as well as variable cross sections and curvatures. The purpose of this paper is to address these issues.

Design/methodology/approach

An adaptive method was proposed to analyse the in-plane and out-of-plane free vibrations of the variable geometrical Timoshenko beams. In the post-processing stage of the displacement-based finite element method, the superconvergent patch recovery method and high-order shape function interpolation technique were used to obtain the superconvergent solution of mode (displacement). The superconvergent solution of mode was used to estimate the error of the finite element solution of mode in the energy form under the current mesh. Furthermore, an adaptive mesh refinement was proposed by mesh subdivision to derive an optimised mesh and accurate finite element solution to meet the preset error tolerance.

Findings

The results computed using the proposed algorithm were in good agreement with those computed using other high-precision algorithms, thus validating the accuracy of the proposed algorithm for beam analysis. The numerical analysis of parabolic curved beams, beams with variable cross sections and curvatures, elliptically curved beams and circularly curved beams helped verify that the solutions of frequencies were consistent with the results obtained using other specially developed methods. The proposed method is well suited for the mesh refinement analysis of a curved beam structure for analysing the changes in high-order vibration mode. The parts where the vibration mode changed significantly were locally densified; a relatively fine mesh division was adopted that validated the reliability of the mesh optimisation processing of the proposed algorithm.

Originality/value

The proposed algorithm can obtain high-precision vibration solutions of variable geometrical Timoshenko beams based on more optimized and reasonable meshes than the conventional finite element method. Furthermore, it can be used for vibration problems of parabolic curved beams, beams with variable cross sections and curvatures, elliptically curved beams and circularly curved beams. The proposed algorithm can be extended for application in superconvergent computation and adaptive analysis of finite element solutions of general structures and solid deformation fields and used for adaptive analysis of more complex plates, shells and three-dimensional structures. Additionally, this method can analyse the vibration and stability of curved members with crack damage to obtain high-precision vibration modes and instability modes under damage defects.

Details

Engineering Computations, vol. 40 no. 1
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 28 October 2021

Baran Bozyigit

This study aims to obtain earthquake responses of linear-elastic multi-span arch-frames by using exact curved beam formulations. For this purpose, the dynamic stiffness method…

Abstract

Purpose

This study aims to obtain earthquake responses of linear-elastic multi-span arch-frames by using exact curved beam formulations. For this purpose, the dynamic stiffness method (DSM) which uses exact mode shapes is applied to a three-span arch-frame considering axial extensibility, shear deformation and rotational inertia for both columns and curved beams. Using exact free vibration properties obtained from the DSM approach, the arch-frame model is simplified into an equivalent single degree of freedom (SDOF) system to perform earthquake response analysis.

Design/methodology/approach

The dynamic stiffness formulations of curved beams for free vibrations are validated by using the experimental data in the literature. The free vibrations of the arch-frame model are investigated for various span lengths, opening angle and column dimensions to observe their effects on the dynamic behaviour. The calculated natural frequencies via the DSM are presented in comparison with the results of the finite element method (FEM). The mode shapes are presented. The earthquake responses are calculated from the modal equation by using Runge-Kutta algorithm.

Findings

The displacement, base shear, acceleration and internal force time-histories that are obtained from the proposed approach are compared to the results of the finite element approach where a very good agreement is observed. For various span length, opening angle and column dimension values, the displacement and base shear time-histories of the arch-frame are presented. The results show that the proposed approach can be used as an effective tool to calculate earthquake responses of frame structures having curved beam elements.

Originality/value

The earthquake response of arch-frames consisting of curved beams and straight columns using exact formulations is obtained for the first time according to the best of the author’s knowledge. The DSM, which uses exact mode shapes and provides accurate free vibration analysis results considering each structural members as one element, is applied. The complicated structural system is simplified into an equivalent SDOF system using exact mode shapes obtained from the DSM and earthquake responses are calculated by solving the modal equation. The proposed approach is an important alternative to classical FEM for earthquake response analysis of frame structures having curved members.

Details

Engineering Computations, vol. 39 no. 2
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 16 May 2023

Yongliang Wang

This study aimed to solve the engineering problem of free vibration disturbance and local mesh refinement induced by microcrack damage in circularly curved beams. The accurate…

Abstract

Purpose

This study aimed to solve the engineering problem of free vibration disturbance and local mesh refinement induced by microcrack damage in circularly curved beams. The accurate identification of the crack damage depth, number and location depends on high-precision frequency and vibration mode solutions; therefore, it is critical to obtain these reliable solutions. The high-precision finite element method for the free vibration of cracked beams needs to be developed to grasp and control error information in the conventional solutions and the non-uniform mesh generation near the cracks. Moreover, the influence of multi-crack damage on the natural frequency and vibration mode of a circularly curved beam needs to be detected.

Design/methodology/approach

A scheme for cross-sectional damage defects in a circularly curved beam was established to simulate the depth, location and the number of multiple cracks by implementing cross-section reduction induced by microcrack damage. In addition, the h-version finite element mesh adaptive analysis method of the Timoshenko beam was developed. The superconvergent solution of the vibration mode of the cracked curved beam was obtained using the superconvergent patch recovery displacement method to determine the finite element solution. The superconvergent solution of the frequency was obtained by computing the Rayleigh quotient. The superconvergent solution of the eigenfunction was used to estimate the error of the finite element solution in the energy norm. The mesh was then subdivided to generate an improved mesh based on the error. Accordingly, the final optimised meshes and high-precision solution of natural frequency and mode shape satisfying the preset error tolerance can be obtained. Lastly, the disturbance behaviour of multi-crack damage on the vibration mode of a circularly curved beam was also studied.

Findings

Numerical results of the free vibration and damage disturbance of cracked curved beams with cracks were obtained. The influences of crack damage depth, crack damage number and crack damage distribution on the natural frequency and mode of vibration of a circularly curved beam were quantitatively analysed. Numerical examples indicate that the vibration mode and frequency of the beam would be disturbed in the region close to the crack damage, and a greater crack depth translates to a larger frequency change. For multi-crack beams, the number and distribution of cracks also affect the vibration mode and natural frequency. The adaptive method can use a relatively dense mesh near the crack to adapt to the change in the vibration mode near the crack, thus verifying the efficacy, accuracy and reliability of the method.

Originality/value

The proposed combination of methodologies provides an extremely robust approach for free vibration of beams with cracks. The non-uniform mesh refinement in the adaptive method can adapt to changes in the vibration mode caused by crack damage. Moreover, the proposed method can adaptively divide a relatively fine mesh at the crack, which is applied to investigating free vibration under various curved beam angles and crack damage distribution conditions. The proposed method can be extended to crack damage detection of 2D plate and shell structures and three-dimensional structures with cracks.

Details

Engineering Computations, vol. 40 no. 3
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 11 April 2020

Mohammad Rezaiee-Pajand, Nima Gharaei-Moghaddam and Mohammadreza Ramezani

This paper aims to propose a new robust membrane finite element for the analysis of plane problems. The suggested element has triangular geometry. Four nodes and 11 degrees of…

Abstract

Purpose

This paper aims to propose a new robust membrane finite element for the analysis of plane problems. The suggested element has triangular geometry. Four nodes and 11 degrees of freedom (DOF) are considered for the element. Each of the three vertex nodes has three DOF, two displacements and one drilling. The fourth node that is located inside the element has only two translational DOF.

Design/methodology/approach

The suggested formulation is based on the assumed strain method and satisfies both compatibility and equilibrium conditions within each element. This establishment results in higher insensitivity to the mesh distortion. Enforcement of the equilibrium condition to the assumed strain field leads to considerably high accuracy of the developed formulation.

Findings

To show the merits of the suggested plane element, its different properties, including insensitivity to mesh distortion, particularly under transverse shear forces, immunities to the various locking phenomena and convergence of the element are studied. The obtained results demonstrate the superiority of the suggested element compared with many of the available robust membrane elements.

Originality/value

According to the attained results, the proposed element performs better than the well-known displacement-based elements such as linear strain triangular element, Q4 and Q8 and even is comparable with robust modified membrane elements.

Details

Engineering Computations, vol. 37 no. 9
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 31 May 2023

Baran Bozyigit

This study aims to perform dynamic response analysis of damaged rigid-frame bridges under multiple moving loads using analytical based transfer matrix method (TMM). The effects of…

199

Abstract

Purpose

This study aims to perform dynamic response analysis of damaged rigid-frame bridges under multiple moving loads using analytical based transfer matrix method (TMM). The effects of crack depth, moving load velocity and damping on the dynamic response of the model are discussed. The dynamic amplifications are investigated for various damage scenarios in addition to displacement time-histories.

Design/methodology/approach

Timoshenko beam theory (TBT) and Rayleigh-Love bar theory (RLBT) are used for bending and axial vibrations, respectively. The cracks are modeled using rotational and extensional springs. The structure is simplified into an equivalent single degree of freedom (SDOF) system using exact mode shapes to perform forced vibration analysis according to moving load convoy.

Findings

The results are compared to experimental data from literature for different damaged beam under moving load scenarios where a good agreement is observed. The proposed approach is also verified using the results from previous studies for free vibration analysis of cracked frames as well as dynamic response of cracked beams subjected to moving load. The importance of using TBT and RLBT instead of Euler–Bernoulli beam theory (EBT) and classical bar theory (CBT) is revealed. The results show that peak dynamic response at mid-span of the beam is more sensitive to crack length when compared to moving load velocity and damping properties.

Originality/value

The combination of TMM and modal superposition is presented for dynamic response analysis of damaged rigid-frame bridges subjected to moving convoy loading. The effectiveness of transfer matrix formulations for the free vibration analysis of this model shows that proposed approach may be extended to free and forced vibration analysis of more complicated structures such as rigid-frame bridges supported by piles and having multiple cracks.

Details

Engineering Computations, vol. 40 no. 4
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 1 June 1997

Jaroslav Mackerle

Gives a bibliographical review of the finite element methods (FEMs) applied for the linear and nonlinear, static and dynamic analyses of basic structural elements from the…

6067

Abstract

Gives a bibliographical review of the finite element methods (FEMs) applied for the linear and nonlinear, static and dynamic analyses of basic structural elements from the theoretical as well as practical points of view. The range of applications of FEMs in this area is wide and cannot be presented in a single paper; therefore aims to give the reader an encyclopaedic view on the subject. The bibliography at the end of the paper contains 2,025 references to papers, conference proceedings and theses/dissertations dealing with the analysis of beams, columns, rods, bars, cables, discs, blades, shafts, membranes, plates and shells that were published in 1992‐1995.

Details

Engineering Computations, vol. 14 no. 4
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 10 January 2020

Guangxin Wang, Lili Zhu, Ken Higuchi, Wenzhong Fan and Linjie Li

The purpose of this paper is to propose and analyze the free vibration response of the spatial curved beams with variable curvature, torsion and cross section, in which all the…

Abstract

Purpose

The purpose of this paper is to propose and analyze the free vibration response of the spatial curved beams with variable curvature, torsion and cross section, in which all the effects of rotary inertia, shear and axial deformations can be considered.

Design/methodology/approach

The governing equations for free vibration response of the spatial curved beams are derived in matrix formats, considering the variable curvature, torsion and cross section. Frobenius’ scheme and the dynamic stiffness method are applied to solve these equations. A computer program is coded in Mathematica according to the proposed method.

Findings

To assess the validity of the proposed solution, a convergence study is carried out on a cylindrical helical spring with a variable circular cross section, and a comparison is made with the finite element method (FEM) results in ABAQUS. Further, the present model is used for reciprocal spiral rods with variable circular cross section in different boundary conditions, and the comparison with FEM results shows that only a limited number of terms in the results provide a relatively accurate solution.

Originality/value

The numerical results show that only a limited number of terms are needed in series solutions and in the Taylor expansion series to ensure an accurate solution. In addition, with a simple modification, the present formulation is easy to extend to analyze a more complicated model by combining with finite element solutions or analyze the transient responses and stochastic responses of spatial curved beams by Laplace transformation or Fourier transformation.

Details

Engineering Computations, vol. 37 no. 5
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 27 April 2023

Mustafa Taşkin and Özgür Demir

The purpose of this paper is to parametrically investigate the vibration and damping characteristics of a functionally graded (FG) inhomogeneous and porous curved sandwich beam

Abstract

Purpose

The purpose of this paper is to parametrically investigate the vibration and damping characteristics of a functionally graded (FG) inhomogeneous and porous curved sandwich beam with a frequency-dependent viscoelastic core.

Design/methodology/approach

The FG material properties in this study are assumed to vary through the beam thickness by power law distribution. Additionally, FG layers have porosities, which are analyzed individually in terms of even and uneven distributions. First, the equations of motion for the free vibration of the FG curved sandwich beam were derived by Hamilton's principle. Then, the generalized differential quadrature method (GDQM) was used to solve the resulting equations in the frequency domain. Validation of the proposed FG curved beam model and the reliability of the GDQ solution was provided via comparison with the results that already exist in the literature.

Findings

A series of studies are carried out to understand the effects on the natural frequencies and modal loss factors of system parameters, i.e. beam thickness, porosity distribution, power law exponent and curvature on the vibration characteristics of an FG curved sandwich beam with a ten-parameter fractional derivative viscoelastic core material model.

Originality/value

This paper focuses on the vibration and damping characteristics of FG inhomogeneous and porous curved sandwich beam with frequency dependent viscoelastic core by GDQM – for the first time, to the best of the authors' knowledge. Moreover, it serves as a reference for future studies, especially as it shows that the effect of porosity distribution on the modal loss factor needs further investigation. GDQM can be useful in dynamic analysis of sandwich structures used in aerospace, automobile, marine and civil engineering applications.

Details

Engineering Computations, vol. 40 no. 3
Type: Research Article
ISSN: 0264-4401

Keywords

1 – 10 of over 1000