Search results

1 – 10 of over 4000
Article
Publication date: 16 May 2023

Yongliang Wang

This study aimed to solve the engineering problem of free vibration disturbance and local mesh refinement induced by microcrack damage in circularly curved beams. The accurate…

Abstract

Purpose

This study aimed to solve the engineering problem of free vibration disturbance and local mesh refinement induced by microcrack damage in circularly curved beams. The accurate identification of the crack damage depth, number and location depends on high-precision frequency and vibration mode solutions; therefore, it is critical to obtain these reliable solutions. The high-precision finite element method for the free vibration of cracked beams needs to be developed to grasp and control error information in the conventional solutions and the non-uniform mesh generation near the cracks. Moreover, the influence of multi-crack damage on the natural frequency and vibration mode of a circularly curved beam needs to be detected.

Design/methodology/approach

A scheme for cross-sectional damage defects in a circularly curved beam was established to simulate the depth, location and the number of multiple cracks by implementing cross-section reduction induced by microcrack damage. In addition, the h-version finite element mesh adaptive analysis method of the Timoshenko beam was developed. The superconvergent solution of the vibration mode of the cracked curved beam was obtained using the superconvergent patch recovery displacement method to determine the finite element solution. The superconvergent solution of the frequency was obtained by computing the Rayleigh quotient. The superconvergent solution of the eigenfunction was used to estimate the error of the finite element solution in the energy norm. The mesh was then subdivided to generate an improved mesh based on the error. Accordingly, the final optimised meshes and high-precision solution of natural frequency and mode shape satisfying the preset error tolerance can be obtained. Lastly, the disturbance behaviour of multi-crack damage on the vibration mode of a circularly curved beam was also studied.

Findings

Numerical results of the free vibration and damage disturbance of cracked curved beams with cracks were obtained. The influences of crack damage depth, crack damage number and crack damage distribution on the natural frequency and mode of vibration of a circularly curved beam were quantitatively analysed. Numerical examples indicate that the vibration mode and frequency of the beam would be disturbed in the region close to the crack damage, and a greater crack depth translates to a larger frequency change. For multi-crack beams, the number and distribution of cracks also affect the vibration mode and natural frequency. The adaptive method can use a relatively dense mesh near the crack to adapt to the change in the vibration mode near the crack, thus verifying the efficacy, accuracy and reliability of the method.

Originality/value

The proposed combination of methodologies provides an extremely robust approach for free vibration of beams with cracks. The non-uniform mesh refinement in the adaptive method can adapt to changes in the vibration mode caused by crack damage. Moreover, the proposed method can adaptively divide a relatively fine mesh at the crack, which is applied to investigating free vibration under various curved beam angles and crack damage distribution conditions. The proposed method can be extended to crack damage detection of 2D plate and shell structures and three-dimensional structures with cracks.

Details

Engineering Computations, vol. 40 no. 3
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 25 January 2023

Yongliang Wang

This study aimed to overcome the challenging issues involved in providing high-precision eigensolutions. The accurate prediction of the buckling load bearing capacity under…

Abstract

Purpose

This study aimed to overcome the challenging issues involved in providing high-precision eigensolutions. The accurate prediction of the buckling load bearing capacity under different crack damage locations, sizes and numbers, and analysing the influence mechanism of crack damage on buckling instability have become the needs of theoretical research and engineering practice. Accordingly, a finite element method was developed and applied to solve the elastic buckling load and buckling mode of curved beams with crack damage. However, the accuracy of the solution depends on the quality of mesh, and the solution inevitably introduces errors due to mesh. Therefore, the adaptive mesh refinement method can effectively optimise the mesh distribution and obtain high-precision solutions.

Design/methodology/approach

For the elastic buckling of circular curved beams with cracks, the section damage defect analogy scheme of a circular arc curved beam crack was established to simulate the crack size (depth), position and number. The h-version finite element mesh adaptive analysis method of the variable section Euler–Bernoulli beam was introduced to solve the elastic buckling problem of circular arc curved beams with crack damage. The optimised mesh and high-precision buckling load and buckling mode solutions satisfying the preset error tolerance were obtained.

Findings

The results of testing typical examples show that (1) the established section damage defect analogy scheme of circular arc curved beam crack can effectively realise the simulation of crack size (depth), position and number. The solution strictly satisfies the preset error tolerance; (2) the non-uniform mesh refinement in the algorithm can be adapted to solve the arbitrary order frequencies and modes of cracked cylindrical shells under the conditions of different ring wave numbers, crack positions and crack depths; and (3) the change in the buckling mode caused by crack damage is applicable to the study of elastic buckling under various curved beam angles and crack damage distribution conditions.

Originality/value

This study can provide a novel strategy for the adaptive mesh refinement for finite element analysis of elastic buckling of circular arc curved beams with crack damage. The adaptive mesh refinement method established in this study is fundamentally different from the conventional finite element method which employs the user experience to densify the meshes near the crack. It can automatically and flexibly generate a set of optimised local meshes by iteratively dividing the fine mesh near the crack, which can ensure the high accuracy of the buckling loads and modes. The micro-crack in curved beams is also characterised by weakening the cross-sectional stiffness to realise the characterisation of locations, depths and distributions of multiple crack damage, which can effectively analyse the disturbance behaviour of different forms of micro-cracks on the dynamic behaviour of beams.

Article
Publication date: 22 December 2022

Yongliang Wang

In this paper, a superconvergent patch recovery method is proposed for superconvergent solutions of modes in the finite element post-processing stage of variable geometrical…

Abstract

Purpose

In this paper, a superconvergent patch recovery method is proposed for superconvergent solutions of modes in the finite element post-processing stage of variable geometrical Timoshenko beams. The proposed superconvergent patch recovery method improves the solution speed and accuracy of the finite element analysis of a curved beam. The free vibration and natural frequency of the beam were considered for studying forced vibrations and structural resonance. Beam vibration mode analysis was performed for high-precision vibration mode solutions and frequency values. The proposed method can be used to compute beam vibration modes of beams with different shapes and boundary conditions as well as variable cross sections and curvatures. The purpose of this paper is to address these issues.

Design/methodology/approach

An adaptive method was proposed to analyse the in-plane and out-of-plane free vibrations of the variable geometrical Timoshenko beams. In the post-processing stage of the displacement-based finite element method, the superconvergent patch recovery method and high-order shape function interpolation technique were used to obtain the superconvergent solution of mode (displacement). The superconvergent solution of mode was used to estimate the error of the finite element solution of mode in the energy form under the current mesh. Furthermore, an adaptive mesh refinement was proposed by mesh subdivision to derive an optimised mesh and accurate finite element solution to meet the preset error tolerance.

Findings

The results computed using the proposed algorithm were in good agreement with those computed using other high-precision algorithms, thus validating the accuracy of the proposed algorithm for beam analysis. The numerical analysis of parabolic curved beams, beams with variable cross sections and curvatures, elliptically curved beams and circularly curved beams helped verify that the solutions of frequencies were consistent with the results obtained using other specially developed methods. The proposed method is well suited for the mesh refinement analysis of a curved beam structure for analysing the changes in high-order vibration mode. The parts where the vibration mode changed significantly were locally densified; a relatively fine mesh division was adopted that validated the reliability of the mesh optimisation processing of the proposed algorithm.

Originality/value

The proposed algorithm can obtain high-precision vibration solutions of variable geometrical Timoshenko beams based on more optimized and reasonable meshes than the conventional finite element method. Furthermore, it can be used for vibration problems of parabolic curved beams, beams with variable cross sections and curvatures, elliptically curved beams and circularly curved beams. The proposed algorithm can be extended for application in superconvergent computation and adaptive analysis of finite element solutions of general structures and solid deformation fields and used for adaptive analysis of more complex plates, shells and three-dimensional structures. Additionally, this method can analyse the vibration and stability of curved members with crack damage to obtain high-precision vibration modes and instability modes under damage defects.

Details

Engineering Computations, vol. 40 no. 1
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 1 June 1997

Jaroslav Mackerle

Gives a bibliographical review of the finite element methods (FEMs) applied for the linear and nonlinear, static and dynamic analyses of basic structural elements from the…

6042

Abstract

Gives a bibliographical review of the finite element methods (FEMs) applied for the linear and nonlinear, static and dynamic analyses of basic structural elements from the theoretical as well as practical points of view. The range of applications of FEMs in this area is wide and cannot be presented in a single paper; therefore aims to give the reader an encyclopaedic view on the subject. The bibliography at the end of the paper contains 2,025 references to papers, conference proceedings and theses/dissertations dealing with the analysis of beams, columns, rods, bars, cables, discs, blades, shafts, membranes, plates and shells that were published in 1992‐1995.

Details

Engineering Computations, vol. 14 no. 4
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 1 March 1996

Seok‐Soon Lee, Jeong Seo Koo and Jin Min Choi

Two‐noded curved beam elements, CMLC and IMLC, are developed on the basis of Timoshenko’s beam theory and curvilinear co‐ordinates. These elements are developed by the separation…

364

Abstract

Two‐noded curved beam elements, CMLC and IMLC, are developed on the basis of Timoshenko’s beam theory and curvilinear co‐ordinates. These elements are developed by the separation of the radial displacement into the bending and the shear deflection and the projection of the shear deflection into bending deflection. In the CMLC element, field‐consistent membrane strain interpolation is adapted for removing the membrane locking. The CMLC element shows the rapid and stable convergence on the wide range of radius, thickness and length of the curved beam. The field‐consistent membrane strain and the separation of radial displacement produce the most efficient linear element possible.

Details

Engineering Computations, vol. 13 no. 2/3/4
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 27 September 2022

Yong Huang, Guangyou Song and Guochang Li

The purpose of this study is to explore the seismic damage mechanism of the Dayemaling Bridge during the Maduo earthquake and discuss the seismic damage characteristics of the…

Abstract

Purpose

The purpose of this study is to explore the seismic damage mechanism of the Dayemaling Bridge during the Maduo earthquake and discuss the seismic damage characteristics of the high-pier curved girder bridge.

Design/methodology/approach

In this study, the numerical simulation method is used to analyze the seismic response using synthetic near-field ground motion records.

Findings

The near-field ground motion of the Maduo earthquake has an obvious directional effect, it is more likely to cause bridge seismic damage. Considering the longitudinal slope of the bridge and adopting the continuous girder bridge form, the beam end displacement of the curved bridge can be effectively reduced, and the collision force of the block and the bending moment of the pier bottom are reduced, so the curved bridge with longitudinal slope is adopted.

Originality/value

Combined with the seismic damage phenomenon of bridges in real earthquakes, the seismic damage mechanism and vulnerability characteristics of high-pier curved girder bridges are discussed by the numerical simulation method, which provides technical support for the application of such bridges in high seismic intensity areas.

Details

Multidiscipline Modeling in Materials and Structures, vol. 18 no. 6
Type: Research Article
ISSN: 1573-6105

Keywords

Article
Publication date: 10 January 2020

Guangxin Wang, Lili Zhu, Ken Higuchi, Wenzhong Fan and Linjie Li

The purpose of this paper is to propose and analyze the free vibration response of the spatial curved beams with variable curvature, torsion and cross section, in which all the…

Abstract

Purpose

The purpose of this paper is to propose and analyze the free vibration response of the spatial curved beams with variable curvature, torsion and cross section, in which all the effects of rotary inertia, shear and axial deformations can be considered.

Design/methodology/approach

The governing equations for free vibration response of the spatial curved beams are derived in matrix formats, considering the variable curvature, torsion and cross section. Frobenius’ scheme and the dynamic stiffness method are applied to solve these equations. A computer program is coded in Mathematica according to the proposed method.

Findings

To assess the validity of the proposed solution, a convergence study is carried out on a cylindrical helical spring with a variable circular cross section, and a comparison is made with the finite element method (FEM) results in ABAQUS. Further, the present model is used for reciprocal spiral rods with variable circular cross section in different boundary conditions, and the comparison with FEM results shows that only a limited number of terms in the results provide a relatively accurate solution.

Originality/value

The numerical results show that only a limited number of terms are needed in series solutions and in the Taylor expansion series to ensure an accurate solution. In addition, with a simple modification, the present formulation is easy to extend to analyze a more complicated model by combining with finite element solutions or analyze the transient responses and stochastic responses of spatial curved beams by Laplace transformation or Fourier transformation.

Details

Engineering Computations, vol. 37 no. 5
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 6 February 2024

Farshid Rashidiyan, Seyed Rasoul Mirghaderi, Saeed Mohebbi and Sina Kavei

This research study focuses on investigating the seismic performance of non-straight beams in steel structures and exploring the mechanism by which plastic hinges are formed…

Abstract

Purpose

This research study focuses on investigating the seismic performance of non-straight beams in steel structures and exploring the mechanism by which plastic hinges are formed within these beams. The findings contribute to the understanding of their behaviour under seismic loads and offer insights into their potential for enhancing the lateral resistance of the structure. The abstract of the study highlights the significance of corners in structural plans, where non-coaxial columns, diagonal elements or beams deviating from a straight path are commonly observed. Typically, these non-straight beams are connected to the columns using pinned connections, despite their unknown seismic behaviour. Recognizing the importance of generating plastic hinges in special moment resisting frames and the lack of previous research on the involvement of these non-straight beams, this study aims to address this knowledge gap.

Design/methodology/approach

This study examines the seismic behaviour and plastic hinge formation of non-straight beams in steel structures. Non-straight beams are beams that connect non-coaxial columns and diagonal elements, or deviate from a linear path. They are usually pinned to the columns, and their seismic contribution is unknown. A critical case with a 12-m non-straight beam is analysed using Abaqus software. Different models are created with varying cross-section shapes and connection types between the non-straight beams. The models are subjected to lateral monotonic and cyclic loads in one direction. The results show that non-straight beams increase the lateral stiffness, strength and energy dissipation of the models compared to disconnected beams that act as two cantilevers.

Findings

The analysis results reveal several key findings. The inclusion of non-straight beams in the models leads to increased lateral stiffness, strength and energy dissipation compared to the scenario where the beams are disconnected and act as two cantilever beams. Plastic hinges are formed at both ends of the non-straight beam when a 3% drift is reached, contributing to energy damping and introducing plasticity into the structure. These results strongly suggest that non-straight beams play a significant role in enhancing the lateral resistance of the system. Based on the seismic analysis results, this study recommends the utilization of non-straight beams in special moment frames due to the formation of plastic hinges within these beams and their effective participation in resisting lateral seismic loads. This research fills a critical gap in understanding the behaviour of non-straight beams and provides valuable insights for structural engineers involved in the design and analysis of steel structures.

Originality/value

The authors believe that this research will greatly contribute to the knowledge and understanding of the seismic performance of non-straight beams in steel structures.

Article
Publication date: 1 October 1952

J. Ratzersdorfer

A slender beam with slight geometrical curvature is divided in bays with different cross‐sections subjected to uniformly distributed and concentrated transverse loads. Combined…

Abstract

A slender beam with slight geometrical curvature is divided in bays with different cross‐sections subjected to uniformly distributed and concentrated transverse loads. Combined with the conditions which hold at the first and last point of the beam, the bending moments at tbe ends of the bays will be determined by three moment equations, or, when uniformly distributed transverse loads are operative, graphically by use of polar co‐ordinates. Knowing these moments a polar diagram can be completed for each bay. Further, a convenient method is shown for the solution of deflexions of the beam. An additional remark deals also with the beam under tension. Finally numerical examples give an illustration of the procedure.

Details

Aircraft Engineering and Aerospace Technology, vol. 24 no. 10
Type: Research Article
ISSN: 0002-2667

Article
Publication date: 1 March 1985

D.L. Hawla and H. Neishlos

The behaviour of curved beams may be simulated via the use of straight elements with constant offset. The theoretical basis for this approach is developed and numerical examples…

Abstract

The behaviour of curved beams may be simulated via the use of straight elements with constant offset. The theoretical basis for this approach is developed and numerical examples demonstrating the effectiveness of the offset elements are presented.

Details

Engineering Computations, vol. 2 no. 3
Type: Research Article
ISSN: 0264-4401

1 – 10 of over 4000