To read this content please select one of the options below:

Free vibration disturbance and local mesh refinement induced by microcrack damage in circularly curved beams

Yongliang Wang (School of Mechanics and Civil Engineering, State Key Laboratory of Coal Resources and Safe Mining, China University of Mining and Technology (Beijing), Beijing, China)

Engineering Computations

ISSN: 0264-4401

Article publication date: 16 May 2023

Issue publication date: 2 June 2023

51

Abstract

Purpose

This study aimed to solve the engineering problem of free vibration disturbance and local mesh refinement induced by microcrack damage in circularly curved beams. The accurate identification of the crack damage depth, number and location depends on high-precision frequency and vibration mode solutions; therefore, it is critical to obtain these reliable solutions. The high-precision finite element method for the free vibration of cracked beams needs to be developed to grasp and control error information in the conventional solutions and the non-uniform mesh generation near the cracks. Moreover, the influence of multi-crack damage on the natural frequency and vibration mode of a circularly curved beam needs to be detected.

Design/methodology/approach

A scheme for cross-sectional damage defects in a circularly curved beam was established to simulate the depth, location and the number of multiple cracks by implementing cross-section reduction induced by microcrack damage. In addition, the h-version finite element mesh adaptive analysis method of the Timoshenko beam was developed. The superconvergent solution of the vibration mode of the cracked curved beam was obtained using the superconvergent patch recovery displacement method to determine the finite element solution. The superconvergent solution of the frequency was obtained by computing the Rayleigh quotient. The superconvergent solution of the eigenfunction was used to estimate the error of the finite element solution in the energy norm. The mesh was then subdivided to generate an improved mesh based on the error. Accordingly, the final optimised meshes and high-precision solution of natural frequency and mode shape satisfying the preset error tolerance can be obtained. Lastly, the disturbance behaviour of multi-crack damage on the vibration mode of a circularly curved beam was also studied.

Findings

Numerical results of the free vibration and damage disturbance of cracked curved beams with cracks were obtained. The influences of crack damage depth, crack damage number and crack damage distribution on the natural frequency and mode of vibration of a circularly curved beam were quantitatively analysed. Numerical examples indicate that the vibration mode and frequency of the beam would be disturbed in the region close to the crack damage, and a greater crack depth translates to a larger frequency change. For multi-crack beams, the number and distribution of cracks also affect the vibration mode and natural frequency. The adaptive method can use a relatively dense mesh near the crack to adapt to the change in the vibration mode near the crack, thus verifying the efficacy, accuracy and reliability of the method.

Originality/value

The proposed combination of methodologies provides an extremely robust approach for free vibration of beams with cracks. The non-uniform mesh refinement in the adaptive method can adapt to changes in the vibration mode caused by crack damage. Moreover, the proposed method can adaptively divide a relatively fine mesh at the crack, which is applied to investigating free vibration under various curved beam angles and crack damage distribution conditions. The proposed method can be extended to crack damage detection of 2D plate and shell structures and three-dimensional structures with cracks.

Keywords

Acknowledgements

The author gratefully acknowledge financial support from the National Natural Science Foundation of China (grants 41877275 and 51608301), Beijing Natural Science Foundation (grant L212016), Yue Qi Young Scholar Project Foundation of China University of Mining and Technology, Beijing (grant 2019QN14), Teaching Reform and Research Projects of Undergraduate Education of China University of Mining and Technology, Beijing (grant J210613), and the Open Fund of Tianjin Key Lab of Soft Soil Characteristics and Engineering Environment (grant 2017SCEEKL003).

Citation

Wang, Y. (2023), "Free vibration disturbance and local mesh refinement induced by microcrack damage in circularly curved beams", Engineering Computations, Vol. 40 No. 3, pp. 615-636. https://doi.org/10.1108/EC-12-2021-0748

Publisher

:

Emerald Publishing Limited

Copyright © 2023, Emerald Publishing Limited

Related articles