Search results

1 – 10 of 46
Article
Publication date: 14 January 2022

Bekinew Kitaw Dejene, Terefe Belachew Fenta and Chirato Godana Korra

The potential for burn injuries arises from contact with a hot surface, flame, hot liquid and steam hazards. The purpose of this study is to develop the flame retardant acrylic…

Abstract

Purpose

The potential for burn injuries arises from contact with a hot surface, flame, hot liquid and steam hazards. The purpose of this study is to develop the flame retardant acrylic and cotton blend textile finished with Enset Ventricosum pseudostem sap (EPS).

Design/methodology/approach

The two fabric was produced from (30% acrylic with 70% cotton) and (35% acrylic with 65% cotton) blend. The extracted sap was made alkaline and applied on two mordanted blend fabrics. The effect of blend ratio, the concentration of EPS and treatment time on flammability, Flame retardant properties of both the control and the treated fabrics were analyzed in terms of vertical flammability based on the design of the experiment software using central composite design. The air permeability and tensile strength of treated and controlled fabric were measured.

Findings

The blended fabrics at different blended ratios were flame retardant with an optimized result of burning time 2.902 min and 2.775 min and char length 6.442 cm and 7.332 cm in the warp and weft direction, respectively, at a concentration of 520 ml and time 33.588 min. There was a slight significant change in mechanical strengths and air permeability. The thermal degradation and the pyrolysis of the fabric samples were studied using thermogravimetric analysis and the chemical composition by Fourier-transform infrared spectroscopy abbreviated as Fourier-transform infrared spectroscopy. The wash durability of the treated fabric at different blend ratios was carried out for the optimized sample and the test result shows that the flame retardancy property is durable up to 15 washes.

Originality/value

Development of flame retardant cotton and acrylic blend textile fabric finish with ESP was studied; this work provides application of EPS for flame resistance which is optimized statically and successfully applied for a flame retardant property on cotton-acrylic blend fabric.

Details

Research Journal of Textile and Apparel, vol. 27 no. 2
Type: Research Article
ISSN: 1560-6074

Keywords

Open Access
Article
Publication date: 21 December 2022

Milad Shabanian and Nicole Leo Braxtan

3-ply cross-laminated timber (CLT) is used to investigate the thermo-mechanical performance of intermediate-size assemblies comprised of T-shaped welded slotted-in steel doweled…

Abstract

Purpose

3-ply cross-laminated timber (CLT) is used to investigate the thermo-mechanical performance of intermediate-size assemblies comprised of T-shaped welded slotted-in steel doweled connections and CLT beams at ambient temperature (AT), after and during non-standard fire exposure.

Design/methodology/approach

The first set of experiments was performed as a benchmark to find the load-carrying capacity of the assembly and investigate the failure modes at AT. The post-fire performance (PFP) test was performed to investigate the residual strength of the assembly after 30-min exposure to a non-standard fire. The fire-performance (FP) test was conducted to investigate the thermo-mechanical behavior of the loaded assembly during non-standard fire exposure. In this case, the assembly was loaded to 67% of AT load-carrying capacity and partially exposed to a non-standard fire for 75 min.

Findings

Embedment failure and plastic deformation of the dowels in the beam were the dominant failure modes at AT. The load-carrying capacity of the assembly was reduced to 45% of the ambient capacity after 30 min of fire exposure. Plastic bending of the dowels was the principal failure mode, with row shear in the mid-layer of the CLT beam and tear-out failure of the header sides also observed. During the FP test, ductile embedment failure of the timber in contact with the dowels was the major failure mode at elevated temperature.

Originality/value

This paper presents for the first time the thermo-mechanical performance of CLT beam-to-girder connections at three different thermal conditions. For this purpose, the outside layers of the CLT beams were aligned horizontally.

Highlights

  1. Load-carrying capacity and failure modes of CLT beam-to-girder assembly with T-shaped steel doweled connections at ambient temperature presented.

  2. Residual strength and failure modes of the assembly after 30-min partially exposure to the non-standard fire provided throughout the post-fire performance test.

  3. Fire resistance of the assembly partially exposed to the non-standard fire highlighted.

Load-carrying capacity and failure modes of CLT beam-to-girder assembly with T-shaped steel doweled connections at ambient temperature presented.

Residual strength and failure modes of the assembly after 30-min partially exposure to the non-standard fire provided throughout the post-fire performance test.

Fire resistance of the assembly partially exposed to the non-standard fire highlighted.

Article
Publication date: 30 August 2022

Yushuang Wu, Jiapeng Long, Bing Liang and Yan Yanan

This paper aims to study a new halogen-free fame-retardant curing agent 1-aminoethylidenediphosphonate (AAEDP).

Abstract

Purpose

This paper aims to study a new halogen-free fame-retardant curing agent 1-aminoethylidenediphosphonate (AAEDP).

Design/methodology/approach

The AAEDP was synthesized by phosphoric acid, acetonitrile and ammonia. The chemical structures of AAEDP were characterized by proton nuclear magnetic resonance, mass spectrometry and Fourier transform infrared spectrometer. Thermal gravimetric analysis (TGA) and scanning electron microscope (SEM) would study the thermal properties and the char residues of AAEDP/EP. The thermal stability, mechanical and flame properties and morphology for the char layer of composite materials were separately investigated using TGA, tensile and charpy impact tests, limiting oxygen index (LOI), UL-94 HB flammability standard (UL-94) and SEM.

Findings

The results showed that the AAEDP had been prepared successfully. When the intumescent flame retardant was added into the EP, the LOI of composite material was improved.

Research limitations/implications

The AAEDP can be prepared successfully and can improve the flame resistance of composite material.

Practical implications

The AAEDP has excellent flame-retardant properties and produce no toxic fumes when burnt in case of fire.

Originality/value

The results showed that the phosphorus content of AAEDP was 2.958 Wt.%; the impact and tensile strength of the composite material were 6.417 kJ m−2 and 38.0 MPa, respectively; and the LOI and UL-94 were 29.7% and V-0 ranking, respectively. The TGA results indicated that the carbon residue ratio can be increased by 1000°C in air. The denser and more uniform structure of residual carbon prevents heat transfer and diffusion, restricts the production of combustible gas and reduces the rate of heat release.

Details

Pigment & Resin Technology, vol. 53 no. 1
Type: Research Article
ISSN: 0369-9420

Keywords

Article
Publication date: 30 September 2019

Adam Roman Petrycki and Osama (Sam) Salem

In fire condition, the time to failure of a timber connection is mainly reliant on the wood charring rate, the strength of the residual wood section, and the limiting temperature…

209

Abstract

Purpose

In fire condition, the time to failure of a timber connection is mainly reliant on the wood charring rate, the strength of the residual wood section, and the limiting temperature of the steel connectors involved in the connection. The purpose of this study is to experimentally investigate the effects of loaded bolt end distance, number of bolt rows, and the existence of perpendicular-to-wood grain reinforcement on the structural fire behavior of semi-rigid glued-laminated timber (glulam) beam-to-column connections that used steel bolts and concealed steel plate connectors.

Design/methodology/approach

In total, 16 beam-to-column connections, which were fabricated in wood-steel-wood bolted connection configurations, in eight large-scale sub-frame test assemblies were exposed to elevated temperatures that followed CAN/ULC-S101 standard time-temperature curve, while being subjected to monotonic loading. The beam-to-column connections of four of the eight test assemblies were reinforced perpendicular to the wood grain using self-tapping screws (STS). Fire tests were terminated upon achieving the failure criterion, which predominantly was dependent on the connection’s maximum allowed rotation.

Findings

Experimental results revealed that increasing the number of bolt rows from two to three, each of two bolts, increased the connection’s time to failure by a greater time increment than that achieved by increasing the bolt end distance from four- to five-times the bolt diameter. Also, the use of STS reinforcement increased the connection’s time to failure by greater time increments than those achieved by increasing the number of bolt rows or the bolt end distance.

Originality/value

The invaluable experimental data obtained from this study can be effectively used to provide insight and better understanding on how mass-timber glulam bolted connections can behave in fire condition. This can also help in further improving the existing design guidelines for mass-timber structures. Currently, beam-to-column wood connections are designed mainly as axially loaded connections with no guidelines available for determining the fire resistance of timber connections exerting any degree of moment-resisting capability.

Details

Journal of Structural Fire Engineering, vol. 14 no. 4
Type: Research Article
ISSN: 2040-2317

Keywords

Open Access
Article
Publication date: 7 December 2022

Milad Shabanian and Nicole Leo Braxtan

Thermomechanical behavior of intermediate-size beam-to-wall assemblies including Glulam-beams connected to cross-laminated timber (CLT) walls with T-shape steel doweled…

Abstract

Purpose

Thermomechanical behavior of intermediate-size beam-to-wall assemblies including Glulam-beams connected to cross-laminated timber (CLT) walls with T-shape steel doweled connections was investigated at ambient temperature (AT) and after and during non-standard fire exposure.

Design/methodology/approach

Three AT tests were conducted to evaluate the load-carrying capacity and failure modes of the assembly at room temperature. Two post-fire performance (PFP) tests were performed to study the impact of 30-min (PFP30) and 60-min (PFP60) partial exposure to a non-standard fire on the residual strength of the assemblies. The assemblies were exposed to fire in a custom-designed frame, then cooled and loaded to failure. A fire performance (FP) test was conducted to study the fire resistance (FR) during non-standard fire exposure by simultaneously applying fire and a mechanical load equal to 65% of the AT load carrying capacity.

Findings

At AT, embedment failure of the dowels followed by splitting failure at the Glulam-beam and tensile failure of the epoxy between the layers of CLT-walls were the dominant failure modes. In both PFP tests, the plastic bending of the dowels was the only observed failure mode. The residual strength of the assembly was reduced 14% after 30 min and 37% after 60 min of fire exposure. During the FP test, embedment failure of timber in contact with the dowels was the only major failure mode, with the maximum rate of displacement at 51 min into the fire exposure.

Originality/value

This is the first time that the thermomechanical performance of such an assembly with a full-contact connection is presented.

Details

Journal of Structural Fire Engineering, vol. 14 no. 3
Type: Research Article
ISSN: 2040-2317

Keywords

Article
Publication date: 3 November 2021

Onukwuli O.D. and Ernest Mbamalu Ezeh

This paper aims to examine the fire retardant property potentials of cow horn ash particles (CHAp) bio-additive and aluminium trihydrate (AH), a traditional inorganic…

37

Abstract

Purpose

This paper aims to examine the fire retardant property potentials of cow horn ash particles (CHAp) bio-additive and aluminium trihydrate (AH), a traditional inorganic fire-retardant additive, respectively, in banana peduncle fibre (BPF) reinforced polyester composites. An attempt was made to comparatively analyse the fire retardant capacity potentials of CHAp, a bio-material waste that is readily available, at no cost, as a potential fire retardant material for composites manufacture with a conventional inorganic fire retardant additive (AH).

Design/methodology/approach

The fibre used in this research was derived from the banana peduncle. The matrix is unsaturated polyester. A scanning electron microscope was used to analyze the particle size of the carbonized CHAp. The composites were compounded using 0%, 2.5%, 5%, 7.5% and 10% of CHAp and AH, respectively. A cone calorimeter instrument was used in the analysis to obtain combustion information of CHAp and AH formulated polyester-BPF composites. Test samples were cut to the dimensions of 100 × 100 mm. All materials are conditioned at 23 ± 30 °C and the relative humidity of 50 ± 5% for 24 h before testing. The samples were wrapped with aluminium foil around the back and edges before placing the samples on the holder and then into the cone calorimeter. The samples were backed with a non-combustible insulating refractory material (brick). The samples were orientated horizontally and exposed to irradiances of 50 kW/m2 at a temperature of approximately 6000 °C. The samples were pilot ignited and ran in triplicate; the average readings of the three runs were taken.

Findings

The results obtained from the analysis depicted similar fire retardant properties for formulations with CHAp and AH, respectively. Composites formulated with CHAp exhibited delayed ignition time of 25%, increased end of burning time of 14.24% and reduced total heat release rate of 9.07% for the developed composites. The developed BPF/CHAp/polyester composites yield composites with fire retardancy, which would find relevance in the engineering material industry.

Originality/value

CHAp, therefore, would suffice as an alternative to the inorganic, expensive and non-environmental friendly, conventional fire retardant additives used in composites manufacture.

Details

World Journal of Engineering, vol. 20 no. 3
Type: Research Article
ISSN: 1708-5284

Keywords

Article
Publication date: 5 December 2023

Yuan Li, Yanzhi Xia, Min Li, Jinchi Liu, Miao Yu and Yutian Li

In this paper the aim is that Aramid/alginate blended nonwoven fabrics were prepared, and the flame retardancy of the blended nonwoven fabrics was studied by thermogravimetric…

Abstract

Purpose

In this paper the aim is that Aramid/alginate blended nonwoven fabrics were prepared, and the flame retardancy of the blended nonwoven fabrics was studied by thermogravimetric analysis, vertical flame test, limiting oxygen index (LOI) and cone calorimeter test.

Design/methodology/approach

The advantages of different fibers can be combined by blending, and the defects may be remedied. The study investigates whether incorporating alginate fibers into aramid fibers can enhance the flame retardancy and reduce the smoke production of prepared aramid/alginate blended nonwoven fabrics.

Findings

Thermogravimetric analysis indicated that alginate fibers could effectively inhibit the combustion performance of aramid fibers at a higher temperature zone, leaving more residual chars for heat isolation. And vertical flame test, LOI and cone calorimeter test testified that the incorporation of alginate fibers improved the flame retardancy and fire behaviors. When the ratio of alginate fibers for aramid/alginate blended nonwoven fabrics reached 80%, the incorporation of alginate fibers could notably decreased peak-heat release rate (54%), total heat release (THR) (29%), peak-smoke production rate (93%) and total smoke production (86%). What is more, the lower smoke production rate and lower THR of the blends vastly reduced the risk of secondary injury in fires.

Originality/value

This study proposes to inhibit the flue gas release of aramid fiber and enhance the flame retardant by mixing with alginate fiber, and proposes that alginate fiber can be used as a biological smoke inhibitor, as well as a flame retardant for aramid fiber.

Details

International Journal of Clothing Science and Technology, vol. 36 no. 1
Type: Research Article
ISSN: 0955-6222

Keywords

Article
Publication date: 14 April 2023

Suzhu Yu, Aloysius Tan, Wei Ming Tan, Xinying Deng, Cher Lin Tan and Jun Wei

This paper aims to develop flame-retardant (FR) polyamide 12 (PA12) nanocomposite from regenerated powder via selective laser sintering (SLS), an additive manufacturing technique.

Abstract

Purpose

This paper aims to develop flame-retardant (FR) polyamide 12 (PA12) nanocomposite from regenerated powder via selective laser sintering (SLS), an additive manufacturing technique.

Design/methodology/approach

First, the morphology, processibility, thermal and mechanical properties of PA12 regenerated powder, consisting of 50 wt% new and 50 wt% recycled powder, as well as corresponding printed specimens, were evaluated to characterize the effects of previous SLS processing. Second, flame-retardant PA12 was developed by incorporating both single and binary halogen-free flame retardants into the regenerated powder.

Findings

It was found that the printed specimens from regenerated powder had much higher tensile and impact properties compared to specimens made from new powder, which is attributed to better particulate fusion and coalescence realized in higher temperature SLS printing. The effect of FRs on thermal, mechanical and flame retardant properties of the PA12 composites/nanocomposites was investigated systematically. It was found that the nanoclay, as a synergist, improved both flame-retardant and mechanical properties of PA12. UL94 standard rating of V-0 was achieved for the printed nanocomposite by incorporating 1 wt% nanoclay into 15 wt% phosphinates FR. Moreover, on average, the tensile and impact strength of the nanocomposite were increased by 26.13% and 17.09%, respectively, in XY, YZ and Z printing orientations as compared to the equivalent flame retardant composite with 20 wt% of the phosphinates FR.

Originality/value

This paper fulfills the need to develop flame retardant parts via SLS technology with waste feedstock. It also addresses the challenge of developing flame retardant materials without obviously compromising the mechanical properties by making use of the synergistic effect of nanoclay and organic phosphinates.

Details

Rapid Prototyping Journal, vol. 29 no. 7
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 28 May 2021

Subbaraju Pericherla and E. Ilavarasan

Nowadays people are connected by social media like Facebook, Instagram, Twitter, YouTube and much more. Bullies take advantage of these social networks to share their comments…

Abstract

Purpose

Nowadays people are connected by social media like Facebook, Instagram, Twitter, YouTube and much more. Bullies take advantage of these social networks to share their comments. Cyberbullying is one typical kind of harassment by making aggressive comments, abuses to hurt the netizens. Social media is one of the areas where bullying happens extensively. Hence, it is necessary to develop an efficient and autonomous cyberbullying detection technique.

Design/methodology/approach

In this paper, the authors proposed a transformer network-based word embeddings approach for cyberbullying detection. RoBERTa is used to generate word embeddings and Light Gradient Boosting Machine is used as a classifier.

Findings

The proposed approach outperforms machine learning algorithms such as logistic regression, support vector machine and deep learning models such as word-level convolutional neural networks (word CNN) and character convolutional neural networks with short cuts (char CNNS) in terms of precision, recall, F1-score.

Originality/value

One of the limitations of traditional word embeddings methods is context-independent. In this work, only text data are utilized to identify cyberbullying. This work can be extended to predict cyberbullying activities in multimedia environment like image, audio and video.

Details

International Journal of Intelligent Unmanned Systems, vol. 12 no. 1
Type: Research Article
ISSN: 2049-6427

Keywords

Article
Publication date: 1 June 2022

Debasmita Mohanty, Krishnan Kanny, Smita Mohanty and Sanjay K. Nayak

The purpose of this study is to reduce the application of petroleum in automobile paint industry by replacing it with bio-based castor oil along with nano fillers to synthesize…

Abstract

Purpose

The purpose of this study is to reduce the application of petroleum in automobile paint industry by replacing it with bio-based castor oil along with nano fillers to synthesize automobile base coat (BC).

Design/methodology/approach

Bio-based polyurethane (PU) coating applicable in automobile BC was synthesized by using modified castor oil incorporated with nano silica (NS) and titanium-based pigment particles. The influential characteristics of the coating was studied by carrying out cross-cut tape test, abrasion resistance, pencil hardness, lap-shear, thermo gravimetric analysis, differential scanning calorimetry, dynamic mechanical analysis and acid, alkali and oil resistance tests.

Findings

Incorporation of NS particles, along with titanium-based pigment particles in optimized ratio into the paint matrix, increases the mechanical, chemical and oil resistance properties and hydrophobicity of the BC, and the findings are compared with the petro-based commercial BC.

Research limitations/implications

There is no significant improvement in thermal properties of the paint matrix, and it is less thermally stable than the commercial BC.

Practical implications

The paint developed through this study provides a simple and practical solution to reduce the petro-based feed-stock in automobile paint industry.

Originality/value

The current work which reports the use of ecofriendly PU BC for automobile paint applications is novel and findings of this study are original.

Details

Pigment & Resin Technology, vol. 52 no. 6
Type: Research Article
ISSN: 0369-9420

Keywords

Access

Year

Last 12 months (46)

Content type

Article (46)
1 – 10 of 46