Search results

1 – 10 of over 21000
Article
Publication date: 1 September 2015

Meltem Zehra Nevzat and Cemil Atakara

From the 19th century onwards, glass has been used intensively in buildings. During the design process, the importance of aesthetics is very common for architects in general. The…

Abstract

From the 19th century onwards, glass has been used intensively in buildings. During the design process, the importance of aesthetics is very common for architects in general. The application of glass walls as part of the building’s structure has given flexibility in design together with transparency as well as aesthetics.

Structural glass systems have been used in different building types for example office, residential, educational, commercial, transportation, cultural … Beyond the high - rise and high - tech buildings, structural glass systems have been applied also to historic buildings during their conservation process. The adaption of the structural glass system and the opportunity to reuse the existing building are other important aspects to be discussed.

In this article, the literature review will be formed with a brief explanation of transparency in contemporary architecture, structural glass systems focusing on ‘suspended glass systems with pre-stressed cable trusses’ (SGSPCT) which has three application methods; 1) between floor systems 2) independent body systems 3) distance bridging systems and the reusability of existing buildings. The ‘between floor system’ which is commonly used as a contemporary solution technique for historic buildings together with its effects, will also be analysed with the help of a case study, Esma Sultan Mansion. This historic building’s present glass structure will be studied to create an alternative proposal less dependent to the existing building. Another case study will be the Ballapais Abbey. Part of this gothic building (the common room) that has collapsed in the past will be analysed. An independent glass structured annex designed with SGSPCT will be proposed giving joint details of the adaptation to the existing building. This case of study is a literature analysis based on books, internet resources, articles and architectural drawings, like plans, sections and details related to the buildings. Both case studies will be proposing an alternative glass structured annex that is focusing on gained transparency and reusability in respect to the existing historic building.

Details

Open House International, vol. 40 no. 3
Type: Research Article
ISSN: 0168-2601

Keywords

Article
Publication date: 26 September 2022

Amirul Syafiq, Nasrudin Abd. Rahim, Vengadaesvaran Balakrishnan and A.K. Pandey

This paper introduced the simple synthesis process of self-cleaning coating with fog-resistance property using hydrophobic polydimethylsiloxane (PDMS) polymer and nano-calcium…

Abstract

Purpose

This paper introduced the simple synthesis process of self-cleaning coating with fog-resistance property using hydrophobic polydimethylsiloxane (PDMS) polymer and nano-calcium carbonate (nano-CaCO3) and titanium dioxide (TiO2).

Design/methodology/approach

The synthesis method of PDMS/nano-CaCO3-TiO2 is based on sol-gel process. The crosslinking between PDMS and nanoparticles is driven by the covalent bond at temperature of 50°C. The 3-Aminopropyltriethoxysilane is used as binder for nanoparticles attachment in polymer matrix. Two fabrication methods are used, which are dip- and spray-coating methods.

Findings

The prepared coated glass fulfilled the requirement of standard self-cleaning and fog-resistance performance. For the self-cleaning test BS EN 1096-5:2016, the coated glasses exhibited the dust haze value around 20%–25% at tilt angle of 10°. For the antifog test, the coated glasses showed the fog haze value were below 2% and the gloss value were above 85%. The obtained results completely achieved the standard antifog value ASTM F659-06 protocol.

Research limitations/implications

Findings will provide an infrastructure support for the building glass to enhance building’s energy efficiency, cleaning performance and friendly environment.

Practical implications

This study proposed the simple synthesis method using hydrophobic polymer and nano-CaCO3 and nano-TiO2, which can achieve optimum self-cleaning property at low tilt angle and fog-resistance performance for building glass.

Social implications

The research findings have high potential for building company, cleaning building company and government sector. The proposed project capable to reduces the energy consumption about 20% per annum due to labor cost, time-consuming and safety during manual cleaning.

Originality/value

The novel method to develop self-cleaning coating with fog-resistance using simple synthesis process and fabrication method for building glass application.

Article
Publication date: 1 September 2023

Dinçer Aydın and Şule Yılmaz Erten

The buildings should be designed by respecting the environmental and climatic conditions they are in and their orientation. Then, the characteristics of the building envelope (BE…

228

Abstract

Purpose

The buildings should be designed by respecting the environmental and climatic conditions they are in and their orientation. Then, the characteristics of the building envelope (BE) play an important role in building energy consumption and user comfort. In fact, the type and material of glazing is one of the crucial parameters for BE. The transparency ratio of BE also determines the façade performance. The aim of this study is to analyze the different renovation scenarios for BE with high transparency of an educational building (EB) in hot summer weather to obtain indoor thermal comfort (ITC) for users.

Design/methodology/approach

The methodology includes thorough measurement of existing ITC using TESTO-440 and simulation of each retrofit scenario using DesignBuilder building energy modeling (BEM) simulation software with Energyplus to determine optimal thermal comfort. Since the study focuses on the impact of the transparent BE on summer ITC, four main scenarios, naturally ventilated (NV) façade, film-coated glass façade, replacement of glazing with opaque units, sun-controlled façade with overhang and solar shading, were simulated. The results were analyzed comparatively on both performance and cost to find the best renovation solutions.

Findings

A total of 7 different renovation scenarios were tested. Simulation results show that passive systems such as NV have limited contribution to indoor air temperature (IAT) improvement, achieving only a 4 °C reduction while offering the lowest cost. A film coating resulted in a reduction of 3–6 °C, but these applications have the highest cost and least impact on ITC. It was found that exterior coating leads to better results in film coating. Preventing and limiting the increase in IAT was achieved by reducing the transparency ratio of BE. The best results were obtained in these scenarios, and it was possible to reduce IAT by more than 10 °C. The best performance/cost value were also obtained by decreasing transparency ratio of roof and sun control.

Research limitations/implications

Since the high transparency ratio has a negative impact on summer comfort, especially in hot climate zones, summer ITC was prioritized in the renovation solutions for the case building.

Originality/value

The study’s findings present a range of solutions for improving the ITC of highly transparent buildings. The solutions can help building managers see the differences in renovation costs and their impacts on ITC to decrease the cooling load of the existing buildings.

Details

Open House International, vol. 49 no. 3
Type: Research Article
ISSN: 0168-2601

Keywords

Article
Publication date: 1 March 1997

B. Josey

Examines the use of glass for glazing in buildings, concentrating on the four basic types: ordinary annealed glass; toughened glass, laminated glass and wired glass. Claims that…

745

Abstract

Examines the use of glass for glazing in buildings, concentrating on the four basic types: ordinary annealed glass; toughened glass, laminated glass and wired glass. Claims that, if the limitations of glass are understood, we have a wonderful, versatile, economic and durable material with as yet unexplored potential.

Details

Structural Survey, vol. 15 no. 1
Type: Research Article
ISSN: 0263-080X

Keywords

Article
Publication date: 12 August 2014

Jiang Jin-gang, Zhang Yong-de and Zhang Shu

The purpose of this paper is to implement a glass-curtain-wall cleaning robot driven by a double flexible rope, so as to replace manual cleaning. The glass-curtain-wall, because…

Abstract

Purpose

The purpose of this paper is to implement a glass-curtain-wall cleaning robot driven by a double flexible rope, so as to replace manual cleaning. The glass-curtain-wall, because of its excellent daylighting performance, damp-proofing characteristics, heat insulation properties and aesthetics, is widely used in modern city buildings. For glass-curtain-wall buildings, regular cleaning of the glass-curtain-wall is necessary to ensure that the surface of the building appears clean and tidy, which in turn contributes toward preserving the overall aesthetic appearance of the city. Currently, the primary method of cleaning glass curtain walls is manual cleaning by workers on a suspended platform.

Design/methodology/approach

The mechanical structure of the proposed glass-curtain-wall cleaning robot driven by a double flexible rope is inspired by the way a spider moves by pulling its silk draglines in the air. For self-locking protection and increased rope friction, the robot’s moving section includes a worm reducer and multislot master–slave roller. The cleaning section comprises a water tank, control valve, shower nozzle and brush. The wall adsorbing section is realized by a double rotor. The workspace of the robot is analyzed. Flexible rope winding and unreeling control of the cleaning robot is deduced. The force of the cleaning robot when the double rotor is working is analyzed and calculated. The prototype of the glass-curtain-wall cleaning robot model driven by a double flexible rope is established, and experiments wherein the robot moves along a preset track, as well as cleaning experiments, are performed.

Findings

The prototype of the glass-curtain-wall cleaning robot model driven by a double flexible rope can move along the preset track, satisfy the design functions and clean effectively. The experimental results verify the validity and practicality of the robot.

Research limitations/implications

The implication of this research is that a glass-curtain-wall cleaning robot model driven by a double flexible rope fulfills the movement strategy and drive-type requirements for cleaning glass curtain walls. The limitation of this research is that it is difficult to implement rapid cleaning.

Originality/value

The traditional method of manual cleaning by workers on a suspended platform will be changed after the glass-curtain-wall cleaning robot is manufactured, and the advent of this cleaning robot for the low- and mid-rise buildings will reduce the cost of cleaning buildings, improve the working environment and enhance production efficiency.

Details

Industrial Robot: An International Journal, vol. 41 no. 5
Type: Research Article
ISSN: 0143-991X

Keywords

Book part
Publication date: 5 June 2023

Kheir Al-Kodmany

This chapter outlines complex and conflicting issues related to designing tall buildings. It gathers a vast amount of fragmented criticism and concerns and organizes them around…

Abstract

This chapter outlines complex and conflicting issues related to designing tall buildings. It gathers a vast amount of fragmented criticism and concerns and organizes them around the three pillars of sustainability: social, economic, and environmental. Mapping out the “unsustainable” aspects forms the foundation for addressing them in future research and tall building developments. The chapter engages the reader with a preliminary discussion on potential solutions to the outlined problems. It also balances extensive criticism by highlighting the virtues and advantages of tall buildings. Consequently, this chapter forms a foundation for improving the sustainability of tall buildings whenever and wherever they are constructed.

Details

Pragmatic Engineering and Lifestyle
Type: Book
ISBN: 978-1-80262-997-2

Keywords

Article
Publication date: 1 November 1985

Tom Jestico

A satisfactory working environment is primarily a delicate balance of ergonomics, acoustics, interior and industrial design, maintenance, and illumination. The most frequently…

Abstract

A satisfactory working environment is primarily a delicate balance of ergonomics, acoustics, interior and industrial design, maintenance, and illumination. The most frequently complained about source of irritation, stress, headaches and eye strain is quoted as being the quality of natural and artificial lighting; it seems that we will withstand deficiencies in all other factors that make up the physical environment without complaint but are far less tolerant of poor lighting quality and, in particular, glare. The eye can adjust to a wide range of lighting levels without causing discomfort. We can quickly adjust to variations in lighting level and, indeed, find some contrast in lighting stimulating. Glare, however, cannot be accommodated without strain.

Details

Facilities, vol. 3 no. 11
Type: Research Article
ISSN: 0263-2772

Article
Publication date: 7 April 2023

Chiara Bedon and Christian Louter

Glass material is largely used for load-bearing components in buildings. For this reason, standardized calculation methods can be used in support of safe structural design in…

Abstract

Purpose

Glass material is largely used for load-bearing components in buildings. For this reason, standardized calculation methods can be used in support of safe structural design in common loading and boundary conditions. Differing from earlier literature efforts, the present study elaborates on the load-bearing capacity, failure time and fire endurance of ordinary glass elements under fire exposure and sustained mechanical loads, with evidence of major trends in terms of loading condition and cross-sectional layout. Traditional verification approaches for glass in cold conditions (i.e. stress peak check) and fire endurance of load-bearing members (i.e. deflection and deflection rate limits) are assessed based on parametric numerical simulations.

Design/methodology/approach

The mechanical performance of structural glass elements in fire still represents an open challenge for design and vulnerability assessment. Often, special fire-resisting glass solutions are used for limited practical applications only, and ordinary soda-lime silica glass prevails in design applications for load-bearing members. Moreover, conventional recommendations and testing protocols in use for load-bearing members composed of traditional constructional materials are not already addressed for glass members. This paper elaborates on the fire endurance and failure detection methods for structural glass beams that are subjected to standard ISO time–temperature for fire exposure and in-plane bending mechanical loads. Fire endurance assessment methods are discussed with the support of Finite Element (FE) numerical analyses.

Findings

Based on extended parametric FE analyses, multiple loading, geometrical and thermo-mechanical configurations are taken into account for the analysis of simple glass elements under in-plane bending setup and fire exposure. The comparative results show that – in most of cases – thermal effects due to fire exposure have major effects on the actual load-bearing capacity of these members. Moreover, the conventional stress peak verification approach needs specific elaborations, compared to traditional calculations carried out in cold conditions.

Originality/value

The presented numerical results confirm that the fire endurance analysis of ordinary structural glass elements is a rather complex issue, due to combination of multiple aspects and influencing parameters. Besides, FE simulations can provide useful support for a local and global analysis of major degradation and damage phenomena, and thus support the definition of simple and realistic verification procedures for fire exposed glass members.

Article
Publication date: 28 May 2020

András Jakab, Viktor Hlavicka, Ágoston Restás and Eva Lubloy

During the building designing, it is very important to deal with the fire resistance of the structures. The designed materials for escape routes should be selected to ensure the…

Abstract

Purpose

During the building designing, it is very important to deal with the fire resistance of the structures. The designed materials for escape routes should be selected to ensure the usability of the structures until the time of escape. Planning affects the glass structures similarly, so these can also be partition walls and load bearing structures, although the latter is less applied on escape routes. The heat protection of the glasses can be improved with heat-protective foils, while fire protection is provided by gel intumescent material.

Design/methodology/approach

To research the topic of fire resistance, laboratory experiments were carried out on small-scaled glass elements with thermal protection foil at Budapest University of Technology and Economics at the Department of Construction Materials and Technologies.

Findings

Fire protection of small model specimens was tested with blowtorch fire and furnace heat load. During the experiments, six foils were tested. Single pane glass, double layered and triple glazed specimens were tested with blowtorch fire.

Originality/value

Fire protection of small model specimens was tested with blowtorch fire and furnace heat load. During the experiments, six foils were tested. Single pane glass, double layered and triple glazed specimens were tested with blowtorch fire. In case of heat-protected glazing, the foils on the “protected” side of the single pane glass do not have a fire protection effect based on blowtorch fire test. For double glassed specimens, the P35 foil has a perceptible effect, even for the requirements of the flame breakthrough (E, integrity), when the foil is placed on the inner side (position 3) of the second glass layer. The stratification of each triple glazed specimens was effective against blowtorch fire load (3 M, S4&P35), so (EI, integrity and isolation) it can meet the requirements of flame breakthrough and thermal insulation.

Details

Journal of Structural Fire Engineering, vol. 11 no. 3
Type: Research Article
ISSN: 2040-2317

Keywords

Article
Publication date: 1 February 1991

D.A. Button

Outlines the development of window and cladding technology in theUK, dealing with two current projects – Fenestration 2000 and TheCentre for Window and Cladding Technology at the…

Abstract

Outlines the development of window and cladding technology in the UK, dealing with two current projects – Fenestration 2000 and The Centre for Window and Cladding Technology at the University of Bath – which are directed at improving UK performance in the window and cladding sector of construction. Suggests that the most successful companies of tomorrow may be those that not only anticipate, but create the future.

Details

Structural Survey, vol. 9 no. 2
Type: Research Article
ISSN: 0263-080X

Keywords

1 – 10 of over 21000