Search results

1 – 10 of 732
Content available
Article
Publication date: 1 August 1999

70

Abstract

Details

Pigment & Resin Technology, vol. 28 no. 4
Type: Research Article
ISSN: 0369-9420

Keywords

Article
Publication date: 20 March 2009

Nesrine Kassem and Abd‐Alla M.A. Nada

The purpose of this paper is to study the effect of treatment using hydrophilic and hydrophobic polymers on mechanical properties and/or water absorption of paper sheets.

392

Abstract

Purpose

The purpose of this paper is to study the effect of treatment using hydrophilic and hydrophobic polymers on mechanical properties and/or water absorption of paper sheets.

Design/methodology/approach

Paper sheets produced from paper grade wood pulp were dipped in polyacrylamide (PAA), polymethylmethacrylate (PMM) and polyvinyl alcohol (PVA) polymer solutions, respectively. The effects of using different polymer solutions (PAA, PMM and PVA), as well as the effects of dipping time (1, 5 and 10 min) and concentration of polymer (0.5, 1, 2 and 3 per cent), on the mechanical properties as well as water absorption of paper sheets were investigated.

Findings

It was found that the treatment of paper sheets with different polymer solutions improved mechanical properties as well as water absorption of paper sheets when the polymer concentration was below 1 per cent and the dipping time did not exceed 5 min.

Research limitations/implications

Paper sheets resulting from treatment using hydrophilic polymers can be used as printing papers as the printability improves because water absorption improves, while paper sheets resulting from using hydrophobic polymers can be used for packaging because water adsorption is less and breaking length improved.

Originality/value

Improving some mechanical properties and/or water absorption of paper sheets. The improvement of dipped sheets increased by increasing dipping time till 5 min and by increasing polymer concentration till 1 per cent. Utilisation of PAA led to best results especially when it was hydrolysed.

Details

Pigment & Resin Technology, vol. 38 no. 2
Type: Research Article
ISSN: 0369-9420

Keywords

Article
Publication date: 26 September 2022

Amirul Syafiq, Nasrudin Abd. Rahim, Vengadaesvaran Balakrishnan and A.K. Pandey

This paper introduced the simple synthesis process of self-cleaning coating with fog-resistance property using hydrophobic polydimethylsiloxane (PDMS) polymer and nano-calcium…

Abstract

Purpose

This paper introduced the simple synthesis process of self-cleaning coating with fog-resistance property using hydrophobic polydimethylsiloxane (PDMS) polymer and nano-calcium carbonate (nano-CaCO3) and titanium dioxide (TiO2).

Design/methodology/approach

The synthesis method of PDMS/nano-CaCO3-TiO2 is based on sol-gel process. The crosslinking between PDMS and nanoparticles is driven by the covalent bond at temperature of 50°C. The 3-Aminopropyltriethoxysilane is used as binder for nanoparticles attachment in polymer matrix. Two fabrication methods are used, which are dip- and spray-coating methods.

Findings

The prepared coated glass fulfilled the requirement of standard self-cleaning and fog-resistance performance. For the self-cleaning test BS EN 1096-5:2016, the coated glasses exhibited the dust haze value around 20%–25% at tilt angle of 10°. For the antifog test, the coated glasses showed the fog haze value were below 2% and the gloss value were above 85%. The obtained results completely achieved the standard antifog value ASTM F659-06 protocol.

Research limitations/implications

Findings will provide an infrastructure support for the building glass to enhance building’s energy efficiency, cleaning performance and friendly environment.

Practical implications

This study proposed the simple synthesis method using hydrophobic polymer and nano-CaCO3 and nano-TiO2, which can achieve optimum self-cleaning property at low tilt angle and fog-resistance performance for building glass.

Social implications

The research findings have high potential for building company, cleaning building company and government sector. The proposed project capable to reduces the energy consumption about 20% per annum due to labor cost, time-consuming and safety during manual cleaning.

Originality/value

The novel method to develop self-cleaning coating with fog-resistance using simple synthesis process and fabrication method for building glass application.

Article
Publication date: 14 June 2022

Sena Demirbağ Genç and Sennur Alay-Aksoy

In this study, fabrication of polymer and cotton fabric exhibiting stimuli-responsive wetting and water vapor permeability features together with antibacterial activity was aimed.

Abstract

Purpose

In this study, fabrication of polymer and cotton fabric exhibiting stimuli-responsive wetting and water vapor permeability features together with antibacterial activity was aimed.

Design/methodology/approach

Temperature and pH-responsive poly(N-isopropyl acrylamide-graft-chitosan) (PNIPAM-g-CS) copolymer were produced via the free radical addition polymerization method and fixed to the cotton fabric using butane tetracarboxylic acid (BTCA) cross-linker by double-bath impregnation method. The chemical structure of the graft copolymer was characterized by Fourier-transform infrared spectroscopy (FT-IR) spectroscopy and H-Nuclear magnetic resonance (1H NMR) analyses. Thermo-responsive behavior of the fabric was investigated by wetting time and water uptake tests, contact angle measurement and surface energy calculation. Additionally, antibacterial activity of the fabric treated with copolymer was studied against S. aureus bacterium.

Findings

PNIPAM-g-CS graft copolymer was synthesized successfully, which had lower critical solution temperature (LCST) value of 32 °C and exhibited thermo-responsive property. The treated fabrics exhibited hydrophilic character at temperatures below the LCST and hydrophobic character at temperatures above the LCST. It was found that polymer-coated fabric could have regulated the water vapor permeability by the change in its pore size and hydrophilicity depending on the temperature. Additionally, treated fabric displayed a pH-responsive water absorption behavior and strong antibacterial activity against S.aureus bacterium.

Originality/value

In the study, it has been shown that the cotton fabrics can be fabricated which have antibacterial activity and capable of pH and temperature responsive smart moisture/water management by application of copolymer. It is thought that the fabric structures developed in the study will be promising in the production of medical textile structures where antibacterial activity and thermophysiological comfort are important.

Details

International Journal of Clothing Science and Technology, vol. 34 no. 6
Type: Research Article
ISSN: 0955-6222

Keywords

Article
Publication date: 1 December 2021

Hongyi Tu, Donglei Liu, Zhenbin Chen and Chunli Liu

Using a reversible addition fragmentation chain transfer reaction, a series of resins were prepared by using N, N-diethyl acrylamide (DEA), poly (ß-hydroxyethyl methacrylate…

Abstract

Purpose

Using a reversible addition fragmentation chain transfer reaction, a series of resins were prepared by using N, N-diethyl acrylamide (DEA), poly (ß-hydroxyethyl methacrylate) (PHEMA) as hydrophilic blocks and poly (glycidyl methacrylate) (PGMA) as hydrophobic blocks (and as a target for immobilizing penicillin G acylase [PGA]) and the low critical solution temperature (LCST) of which could be adjusted by changing the segment length of blocks.

Design/methodology/approach

To make the catalytic conversion temperature of immobilized PGA fallen into the temperature range of the sol state of thermosensitive block resin, a type of thermosensitive block resin, i.e. PDEA-b-PHEMA-b-PGMA (DHGs) was synthesized to immobilize PGA, and the effect of segment order of block resin was investigated on the performance of PGA.

Findings

Carrier prepared with monomers molar ratio of n(DEA) : n(HEMA): n(GMA) = 100: 49: 36 presented loading capacity (L) and enzyme activity recovery ratio (Ar) of 110 mg/g and 90%, respectively, and a block resin with LCST value of 33 °C was essential for keeping higher Ar of PGA.

Originality/value

PGA has become an important biocatalyst in modern chemistry industry. However, disadvantages include difficulty in separation, poor repeatability and high cost, which limits the scope of PGA applications. The effective method is to immobilize the enzyme to the carrier, which could overcome the disadvantage of free enzyme.

Details

Pigment & Resin Technology, vol. 51 no. 5
Type: Research Article
ISSN: 0369-9420

Keywords

Article
Publication date: 19 July 2021

Kawaljit Singh Randhawa and Ashwin Patel

The mechanical and tribological properties of polymers and polymer composites vary with different environmental conditions. This paper aims to review the influence of…

Abstract

Purpose

The mechanical and tribological properties of polymers and polymer composites vary with different environmental conditions. This paper aims to review the influence of humidity/water conditions on various polymers and polymer composites' mechanical properties and tribological behaviors.

Design/methodology/approach

The influence of humidity and water absorption on mechanical and tribological properties of various polymers, fillers and composites has been discussed in this paper. Tensile strength, modulus, yield strength, impact strength, COF and wear rates of polymer composites are compared for different environmental conditions. The interaction between the water molecules and hydrophobic polymers is also represented.

Findings

Pure polymer matrices show somewhat mixed behavior in humid environments. Absorbed moisture generally plasticizes the epoxies and polyamides and lowers the tensile strength, yield strength and modulus. Wear rates of PVC generally decrease in humid environments, while for polyamides, it increases. Fillers like graphite and boron-based compounds exhibit low COF, while MoS2 particulate fillers exhibit higher COF at high humidity and water conditions. The mechanical properties of fiber-reinforced polymer composites tend to decrease as the rate of humidity increases while the wear rates of fiber-reinforced polymer composites show somewhat mixed behavior. Particulate fillers like metals and advanced ceramics reinforced polymer composites exhibit low COF and wear rates as the rate of humidity increases.

Originality/value

The mechanical and tribological properties of polymers and polymer composites vary with the humidity value present in the environment. In dry conditions, wear loss is determined by the hardness of the contacting surfaces, which may not effectively work for high humid environments. The tribological performance of composite constituents, i.e. matrix and fillers in humid environments, defines the overall performance of polymer composite in said environments.

Details

Industrial Lubrication and Tribology, vol. 73 no. 9
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 1 January 1986

R.K. Sadhir and H.E. Saunders

The paper describes the plasma polymerisation process for depositing ultrathin films. Such films, deposited from monomers containing hydrophobic elements such as hexafluorobenzene…

Abstract

The paper describes the plasma polymerisation process for depositing ultrathin films. Such films, deposited from monomers containing hydrophobic elements such as hexafluorobenzene and hexamethyldisiloxane, showed excellent water vapour barrier properties, due to dense, highly crosslinked and rigid structures of the films. The composition and structure of the plasma polymerised films have been elucidated by ESCA and infra‐red spectroscopy.

Details

Microelectronics International, vol. 3 no. 1
Type: Research Article
ISSN: 1356-5362

Article
Publication date: 12 September 2008

M.A. Shenoy and D.J. D'Melo

The purpose of this paper is to study the effect of acrylated guar gum (GG) compared with GG in acrylic emulsions with reference to its viscosity, film properties such as…

Abstract

Purpose

The purpose of this paper is to study the effect of acrylated guar gum (GG) compared with GG in acrylic emulsions with reference to its viscosity, film properties such as mechanical strength, weathering properties and clarity.

Design/methodology/approach

The acrylate derivatives were synthesised and characterised and then incorporated in acrylic emulsions and their rheology studied. Films were analysed for their clarity and mechanical properties. The films were then subjected to UV radiation and the influence of these additives on the weathering properties was studied.

Findings

The viscosity of acrylated GGs in emulsions was lower than that of GG in emulsion because of the increased hydrophobic nature and hence reduced water‐binding capacity. The mechanical properties of acrylated GGs were superior compared with GG due to increased compatibility of the additive with the polymer binder. This was further confirmed with increased clarity of the films. Acrylated GG was found to act as a protective additive with reference to UV degradation of the coatings.

Research limitations/implications

The performance of these additives was analysed on un‐pigmented coating formulations, which may not conform with pigmented coatings.

Practical implications

These biodegradable additives synthesised from renewable resources could be used to increase the mechanical strength as UV stabilisers and in some cases also as rheology modifiers.

Originality/value

The use of acrylated polysaccharides to increase mechanical and weathering properties allows the use of biodegradable, renewable resources as opposed to petroleum‐based compounds.

Details

Pigment & Resin Technology, vol. 37 no. 5
Type: Research Article
ISSN: 0369-9420

Keywords

Article
Publication date: 25 February 2014

Lijun Chen and Wei Jiang

Fluorinated polyurethane combines some virtues of polyurethane and fluorinated polymer, such as low water absorption, attractive surface properties, good wearability and high…

Abstract

Purpose

Fluorinated polyurethane combines some virtues of polyurethane and fluorinated polymer, such as low water absorption, attractive surface properties, good wearability and high weatherability. Fluorocarbon chains have been incorporated into polyurethanes by fluorinated diisocyanates, chain extenders, polyether glycols, polyester glycols and end-cappers. However, the fluorinated polyurethane, which is prepared with monohydric fluorocarbon alcohol, is seldom reported. The purpose of this research is to prepare and apply the novel fluorocarbon alcohols with side chain to modify polyurethane as the blocking agent.

Design/methodology/approach

The novel fluorocarbon alcohol with side chain 2-methoxy-3-nonene perfluorinated oxygen propanol (MNPOP) can be prepared via alcoholysis reaction of methanol and 2,3-epoxypropyl perfluorinated nonene ether (EPPNE), which was prepared with etherification of hexafluoropropene trimer (HFPT) and 2,3-glycidol. Structures of EPPNE and MNPOP are confirmed with FTIR and NMR. The polyurethane can be modified when MNPOP is used as blocking agent.

Findings

In comparison with the conventional polyurethane, the hydrophobic property of fluorinated polyurethane is improved. However, the increase of tensile strength of modified polyurethane is not obvious because MNPOP belongs to monohydric alcohol. And the function of MNPOP in the modified polyurethane is the blocking agent. The thermal stability of conventional and modified polyurethane is almost the same because MNPOP is de-blocked and fluorocarbon chains have not been incorporated into polyurethanes when the temperature is more than 150°C.

Originality/value

The polyurethane is modified with the novel fluorocarbon alcohols with side chain, which functions as the blocking agent. The hydrophobic property of fluorinated polyurethane is improved.

Details

Pigment & Resin Technology, vol. 43 no. 2
Type: Research Article
ISSN: 0369-9420

Keywords

Article
Publication date: 4 September 2017

Zaker Bahreini, Vahid Heydari and Zahra Namdari

Mechanical and chemical properties of acrylic-melamine automotive clear coat in the presence of different percentages of well dispersed nano-layered sodium montmorillonite…

Abstract

Purpose

Mechanical and chemical properties of acrylic-melamine automotive clear coat in the presence of different percentages of well dispersed nano-layered sodium montmorillonite (Na-MMT) silicate particles were investigated. For this purpose, prepared dry clear coat film samples were subjected to the entire standard test series, usually carried out in automotive coating industry.

Design/methodology/approach

Effects of adding different percentages of nano-layered silicate on mechanical and chemical properties of acrylic-melamine automotive clear coat were investigated. To increase the compatibility of nanoclays with polymer matrix of clear coat, the surface of nanoclays was modified by benzalkonium chloride as a cationic surfactant. Scanning electron microscopy (SEM) and X-ray diffraction (XRD) were used for characterization and comparison between clays before and after modification, and also after dispersion in coating. Prepared dry clear coat film samples subjected to the test series are usually carried out in automotive coating industry.

Findings

The results indicated that incorporation of 1 and 2 Wt.% of nano-layered silicate caused desired improvement in chemical and physical properties of the acrylic-melamine clear coat. Increasing the percentage of nanoclay to over 2 Wt.% caused damage in some properties such as hardness, cupping and gloss.

Research limitations/implications

All materials and methods were used in this research are industrial grade. Therefore, the introduced modified clear coat sample has potential for commercial production as an automotive clear coat.

Originality/value

As far as it was searched in the literature, effects of adding nanoclay particles on mechanical and physical properties of different clear coats, such as epoxy clear coat, have been investigated in a few researches, but in this research, common and special tests which are necessary in automotive coating industry have been ignored. In the present study for the first time, acrylic-melamine clear coat was subjected to modification using nano-clay, and also, the most common industrial test methods were used for investigation of mechanical and chemical properties.

Details

Pigment & Resin Technology, vol. 46 no. 5
Type: Research Article
ISSN: 0369-9420

Keywords

1 – 10 of 732