Search results

1 – 10 of 324
Article
Publication date: 7 January 2021

Fatma Bakal, Ahmet Yapici, Muharrem Karaaslan and Oğuzhan Akgöl

The purpose of this paper is to investigate the effect of doping element on the microwave absorption performance of hexagonal nano boron nitride (h-nBN)-reinforced basalt fabric…

Abstract

Purpose

The purpose of this paper is to investigate the effect of doping element on the microwave absorption performance of hexagonal nano boron nitride (h-nBN)-reinforced basalt fabric (BF)/epoxy composites. A new type of hybrid composite that will be produced by the use of boron nitride as an additive that leads to increased radar absorption capability will be developed and a new material that can be used in aeronautical radar applications.

Design/methodology/approach

This study is focused on the microwave absorption properties of h-nBN doped basalt fabric-reinforced epoxy composites. Basalt fabric (BF)/epoxy composites (pure composites) and the BF/h-nBN (1 Wt.% h-nBN doped composites) hybrid composites were fabricated by vacuum infusion method. Phase identification of the composites were performed using X-ray diffraction (XRD), the 2θ scan range was from 10 to 60 with the scanning speed of 3°/min and surface morphologies of the composites were investigated using scanning electron microscopy (SEM). Microwave properties of samples were investigated through transmission/reflection measurements in Agilent brand 2-Port PNA-L Network Analyzer in the frequency range of 3–18 GHz. The prepared sample is positioned between two horn antennas with and without metal plate.

Findings

Experimental results show that h-nBN doped composite was synthesized successfully and the produced hexagonal nano boron nitride-added fiber laminated composite material has good absorption behavior when they are used with metallic sheets and good for isolation applications at many points in the 3–18 GHz band.

Originality/value

This paper will contribute to the literature on the use of basalt fabric, which are new types of fibers, and hexagonal nano boron nitride and the effects of boron nitride on radar absorption properties of composite material. It presents detail characterization of each composite by using XRD and scanning electron microscopy.

Details

Aircraft Engineering and Aerospace Technology, vol. 93 no. 1
Type: Research Article
ISSN: 1748-8842

Keywords

Article
Publication date: 17 April 2023

Kawaljit Singh Randhawa

The purpose of this study is to prepare a state-of-the-art review on advanced ceramic materials including their fabrication techniques, characteristics, applications and…

Abstract

Purpose

The purpose of this study is to prepare a state-of-the-art review on advanced ceramic materials including their fabrication techniques, characteristics, applications and wettability.

Design/methodology/approach

This review paper presents the various types of advanced ceramic materials according to their compounding elements, fabrication techniques of advanced ceramic powders as well as their consolidation, their characteristics, applications and wetting properties. Hydrophobic/hydrophilic properties of advanced ceramic materials are described in the paper with their state-of-the-art application areas. Optical properties of fine ceramics with their intrinsic characteristics are also presented within. Special focus is given to the brief description of application-based manipulation of wetting properties of advanced ceramics in the paper.

Findings

The study of wetting/hydrophobicity/hydrophilicity of ceramic materials is important by which it can be further modified to achieve the required applications. It also makes some sense that the material should be tested for its wetting properties when it is going to be used in some important applications like biomedical and dental. Also, these advanced ceramics are now often used in the fabrication of filters and membranes to purify liquid/water so the study of wetting characteristics of these materials becomes essential. The optical properties of advanced ceramics are equally making them suitable for many state-of-the-art applications. Dental, medical, imaging and electronics are the few sectors that use advanced ceramics for their optical properties.

Originality/value

This review paper includes various advanced ceramic materials according to their compounding elements, different fabrication techniques of powders and their consolidation, their characteristics, various application area and hydrophobic/hydrophilic properties.

Details

Pigment & Resin Technology, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0369-9420

Keywords

Article
Publication date: 8 October 2018

Binnur Sagbas

The purpose of this paper is to investigate applicability of hexagonal boron nitride (h-BN) powder as a solid lubricant additive in coconut oil and to determine the tribological…

Abstract

Purpose

The purpose of this paper is to investigate applicability of hexagonal boron nitride (h-BN) powder as a solid lubricant additive in coconut oil and to determine the tribological behavior of PEEK rubbed with DIN2080 tool steel, under prepared green lubricating condition.

Design/methodology/approach

In this study, tiribological performance of PEEK against the DIN2080 tool steel is investigated with green lubricant. Coconut oil was used as green lubricant and 4 per cent wt. h-BN powder was added as lubricant additive into the coconut oil. Reciprocal pin-plate tribological test were applied under dry, coconut oil and coconut oil+h-BN lubrication condition. Friction coefficients were recorded and wear behavior of the samples investigated by mass loss measurement and topographical inspection of wear track by optical profilometer.

Findings

Using coconut oil as lubricant provided 80 per cent reduction of friction coefficient and 33.4 per cent reduction of wear rate. Addition of h-BN into the coconut oil provide 84 per cent reduction of friction coefficient and 56 per cent reduction of wear rate. The results showed that vegetable oil is promising lubricant for sustainable manufacturing. h-BN serves to increase lubricant performance and decrease wear of the surfaces.

Practical implications

Petrochemical lubricants are one of the major sources of environmental pollution and health hazards. Development and use of environmental and health friendly lubricants support sustainability and reduce wear, friction and energy consumption. With this consciousness, recent studies have focused on green tribology and green lubricants such as vegetable oils, ionic liquid bio-lubricants and bio-based polymers.

Originality/value

In literature study coconut oil was proposed as green lubricant while h-BN powder was proposed as solid lubricant. However, applicability of h-BN powder in coconut oil has not been explored yet. Moreover, wear and friction property of PEEK material with DIN 2080 tool steel pair surface has not been studied yet with green lubricants.

Details

Industrial Lubrication and Tribology, vol. 72 no. 2
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 8 June 2023

Kawaljit Singh Randhawa

The purpose of this study is to look into the hygroscopic and tribo-mechanical properties of a polypropylene/polyamide-6 (PP/PA6) blend and a PP/PA6/Boron sesquioxide composite.

Abstract

Purpose

The purpose of this study is to look into the hygroscopic and tribo-mechanical properties of a polypropylene/polyamide-6 (PP/PA6) blend and a PP/PA6/Boron sesquioxide composite.

Design/methodology/approach

The hygroscopic behaviour of the PP/PA6 blend and PP/PA6/Boron sesquioxide composite was studied using a water contact angle goniometer in this study. To validate the hygroscopic behaviour of the blend and composite, water contact angles and surface energy of the materials were investigated. Tensile strength and hardness tests were used to determine mechanical characteristics, and tribological experiments on a pin-on-disc tribometer were used to demonstrate the friction and wear rates of dry and water-conditioned blends and composites. The melting temperature of dry and water-conditioned composites was determined using DSC analysis.

Findings

The hygroscopic effect of the PP/PA6 blend was found to be minimal in the experiment, while it was relatively dominating in the PP/PA6/Boron sesquioxide composite. Tensile strength was found to be somewhat lower in blend and composite compared to virgin PP, whereas hardness was found to be higher in both blend and composite. The composite’s tribological testing findings were fairly outstanding, with the coefficient of friction (COF) and wear rates significantly reduced due to boron sesquioxide reinforcement. The reaction between boron sesquioxide and water molecules produced boric acid, which increased the tribological characteristics of the composite even further. Following 30 days of water conditioning, the weight of the blend increased by 3.64% and the weight of the composite increased by 6.45% as compared to the dry materials. After water conditioning, tensile strength reduced by 0.8% for the blend and 14.16% for the composite. Hardness was determined to be the same in the dry state and after water-conditioning for blend but dropped 1% for composite. As compared to blend, the COF and wear resistance of composite were 15.52% and 25.16% higher, respectively. After absorbing some water, the results increased to 28.57% and 34.9%, respectively.

Originality/value

The mechanical and thermal behaviour of polymer composites (particularly polyamide composites) vary depending on the surrounding environment. Tests were carried out to explore the effect of water treatment on the tribo-mechanical and thermal characteristics of PP/PA6/Boron sesquioxide composite. Water treatment caused polyamides to bind with water molecules, resulting in voids in the material. The interaction between boron sesquioxide and water molecules produced boric acid, which increased the tribological characteristics of the composite.

Details

Pigment & Resin Technology, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0369-9420

Keywords

Article
Publication date: 4 December 2018

Zhentao Yuan, Yehua Jiang, Lu Li and Zulai Li

The purpose of this paper is to study the microstructure and the high-temperature tribology behavior of a high-speed steel (HSS) roller material with boron as the main alloy…

Abstract

Purpose

The purpose of this paper is to study the microstructure and the high-temperature tribology behavior of a high-speed steel (HSS) roller material with boron as the main alloy element under different heat treatments, aiming to provide some theoretical references for its engineering application.

Design/methodology/approach

The samples of high boron HSS were quenched at 900°C, 1,000°C, 1,050°C and 1,150°C. The microstructure, composition and phase composition of this new HSS were analyzed by OM, scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDS) and X-ray diffractometer. The surface hardness and the tribology behavior under high temperature were measured by Rockwell hardness tester and the high-temperature friction and wear tester. The wear morphology was observed by SEM.

Findings

The high-temperature friction coefficient and the relative wear rate of the high boron HSS decrease first, then increase with the rise of the quenching temperature. When the quenching temperature is 1,050°C, both the friction coefficient (0.425) and the relative wear rate (79 per cent) are the smallest. Under the high-temperature friction environment, the high boron HSS mainly includes oxidation wear, adhesive wear and abrasive wear. The effect of abrasive wear is weakened gradually with the rise of the quenching temperature, and the high-temperature wear resistance is improved significantly. Compared with the traditional roll materials, the service life of the new high boron HSS is greatly improved. It is an ideal substitute product for the high chromium cast iron roll.

Originality/value

The boron element replaces other precious metals in high boron HSS, which has the advantage of low production cost, and it has a wide application in the field of roll materials. In this paper, the microstructure, the transformation of hard phases and the high-temperature tribology behavior of this new high boron HSS under different heat treatments were studied, aiming to provide some theoretical references for its engineering application.

Details

Industrial Lubrication and Tribology, vol. 71 no. 2
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 13 June 2016

Doğuş Özkan, M. Barış Yağci, Özgür Birer and Hakan Kaleli

This study aims to evaluate and compare by 100 hours engine bench tests the tribological performances of two types of lubrication oils, which were sulfur-based, boron

Abstract

Purpose

This study aims to evaluate and compare by 100 hours engine bench tests the tribological performances of two types of lubrication oils, which were sulfur-based, boron succinimide-containing antiwear package (NP-3) oil and conventional zinc dialkyldithiophosphate (ZDDP)-containing (R-1) oil.

Design/methodology/approach

The tribological performances of the oils were evaluated in three main contexts, including engine tests, physical/chemical changes and surface analysis.

Findings

Results showed that NP-3 lubrication oil, which was environment- and catalyst-friendly, can be an alternative lubrication oil with its tribological performance due to similar antiwear characteristics with the ZDDP.

Originality/value

Attempts to develop catalysis- and environment-friendly antiwear additive packages have not presented popular or commonly used ZDDP-free products for the vehicle industry. This study presents tribological characterization of a newly developed ZDDP-free lubricating oil by engine bench tests.

Details

Industrial Lubrication and Tribology, vol. 68 no. 4
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 1 January 1990

Centrotherm GmbH announce the appointment of Mr George Birnie to the position of Sales Manager (Centrotherm UK) for the United Kingdom and Scandinavia (see photograph below).

Abstract

Centrotherm GmbH announce the appointment of Mr George Birnie to the position of Sales Manager (Centrotherm UK) for the United Kingdom and Scandinavia (see photograph below).

Details

Microelectronics International, vol. 7 no. 1
Type: Research Article
ISSN: 1356-5362

Article
Publication date: 12 April 2024

Mandeep Singh, Deepak Bhandari and Khushdeep Goyal

The purpose of this paper is to examine the mechanical characteristics and optimization of wear parameters of hybrid (TiO2 + Y2O3) nanoparticles with Al matrix using squeeze…

Abstract

Purpose

The purpose of this paper is to examine the mechanical characteristics and optimization of wear parameters of hybrid (TiO2 + Y2O3) nanoparticles with Al matrix using squeeze casting technique.

Design/methodology/approach

The hybrid aluminium matrix nanocomposites (HAMNCs) were fabricated with varying concentrations of titanium oxide (TiO2) and yttrium oxide (Y2O3), from 2.5 to 10 Wt.% in 2.5 Wt.% increments. Dry sliding wear test variables were optimized using the Taguchi method.

Findings

The introduction of hybrid nanoparticles in the aluminium (Al) matrix was evenly distributed in contrast to the base matrix. HAMNC6 (5 Wt.% TiO2 + 5 Wt.% Y2O3) reported the maximum enhancement in mechanical properties (tensile strength, flexural strength, impact strength and density) and decrease in porosity% and elongation% among other HAMNCs. The results showed that the optimal combination of parameters to achieve the lowest wear rate was A3B3C1, or 15 N load, 1.5 m/s sliding velocity and 200 m sliding distance. The sliding distance showed the greatest effect on the dry sliding wear rate of HAMNC6 followed by applied load and sliding velocity. The fractured surfaces of the tensile sample showed traces of cracking as well as substantial craters with fine dimples and the wear worn surfaces were caused by abrasion, cracks and delamination of HAMNC6.

Originality/value

Squeeze-cast Al-reinforced hybrid (TiO2+Y2O3) nanoparticles have been investigated for their impact on mechanical properties and optimization of wear parameters.

Details

World Journal of Engineering, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1708-5284

Keywords

Article
Publication date: 2 January 2018

Wei Qiang Lim, Mutharasu Devarajan and Shanmugan Subramani

This paper aims to study the influence of the Cu-Al2O3 film-coated Cu substrate as a thermal interface material (TIM) on the thermal and optical behaviour of the light-emitting…

184

Abstract

Purpose

This paper aims to study the influence of the Cu-Al2O3 film-coated Cu substrate as a thermal interface material (TIM) on the thermal and optical behaviour of the light-emitting diode (LED) package and the annealing effect on the thermal and optical properties of the films.

Design/methodology/approach

A layer-stacking technique has been used to deposit the Cu-Al2O3 films by means of magnetron sputtering, and the annealing process was conducted on the synthesized films.

Findings

In this paper, it was found that the un-annealed Cu-Al2O3–coated Cu substrate exhibited low value of thermal resistance compared to the bare Cu substrate and to the results of previous works. Also the annealing effect does not have a significant impact on the changes of properties of the films.

Research limitations/implications

It is deduced that the increase of the Cu layer thickness can further improve the thermal properties of the deposited film, which can reduce the thermal resistance of the package in system-level analysis.

Practical implications

The paper suggested that the Cu-Al2O3–coated Cu substrate can be used as alternative TIM for the thermal management of the application of LEDs.

Originality value

In this paper, the Cu substrate has been used as the substrate for the Cu-Al2O3 films, as the Cu substrate has higher thermal conductivity compared to the Al substrate as shown in previous work.

Details

Microelectronics International, vol. 35 no. 1
Type: Research Article
ISSN: 1356-5362

Keywords

Article
Publication date: 25 March 2024

Fatemeh Mollaamin and Majid Monajjemi

This study aims to investigate the potential of the decorated boron nitride nanocage (BNNc) with transition metals for capturing carbon monoxide (CO) as a toxic gas in the air.

Abstract

Purpose

This study aims to investigate the potential of the decorated boron nitride nanocage (BNNc) with transition metals for capturing carbon monoxide (CO) as a toxic gas in the air.

Design/methodology/approach

BNNc was modeled in the presence of doping atoms of titanium (Ti), vanadium (V), chromium (Cr), cobalt (Co), copper (Cu) and zinc (Zn) which can increase the gas sensing ability of BNNc. In this research, the calculations have been accomplished by CAM–B3LYP–D3/EPR–3, LANL2DZ level of theory. The trapping of CO molecules by (Ti, V, Cr, Co, Cu, Zn)–BNNc has been successfully incorporated because of binding formation consisting of C → Ti, C → V, C → Cr, C → Co, C → Cu, C → Zn.

Findings

Nuclear quadrupole resonance data has indicated that Cu-doped or Co-doped on pristine BNNc has high fluctuations between Bader charge versus electric potential, which can be appropriate options with the highest tendency for electron accepting in the gas adsorption process. Furthermore, nuclear magnetic resonance spectroscopy has explored that the yield of electron accepting for doping atoms on the (Ti, V, Cr, Co, Cu, Zn)–BNNc in CO molecules adsorption can be ordered as follows: Cu > Co >> Cr > Zn ˜ V> Ti that exhibits the strength of the covalent bond between Ti, V, Cr, Co, Cu, Zn and CO. In fact, the adsorption of CO gas molecules can introduce spin polarization on the (Ti, V, Cr, Co, Cu, Zn)–BNNc which specifies that these surfaces may be used as magnetic-scavenging surface as a gas detector. Gibbs free energy based on IR spectroscopy for adsorption of CO molecules adsorption on the (Ti, V, Cr, Co, Cu, Zn)–BNNc have exhibited that for a given number of carbon donor sites in CO, the stabilities of complexes owing to doping atoms of Ti, V, Cr, Co, Cu, Zn can be considered as: CO →Cu–BNNc >> CO → Co–BNNc > CO → Cr–BNNc > CO → V–BNNc > CO → Zn–BNNc > CO → Ti–BNNc.

Originality/value

This study by using materials modeling approaches and decorating of nanomaterials with transition metals is supposed to introduce new efficient nanosensors in applications for selective sensing of carbon monoxide.

Details

Sensor Review, vol. 44 no. 2
Type: Research Article
ISSN: 0260-2288

Keywords

1 – 10 of 324